
On Simple Linear String Equations

Xiang Fu1 and Chung-Chih Li2 and Kai Qian3

1 Hofstra University, Xiang.Fu@hofstra.edu
2 Illinois State University, cli2@ilstu.edu

3 Southern Polytechnic State University, kqian@spsu.edu

Abstract. This paper presents a novel backward constraint solving tech-
nique for analyzing text processing programs. String constraints are rep-
resented using a variation of word equation called Simple Linear String
Equation (SLSE). SLSE supports precise modeling of various regular
string substitution semantics in Java regex, which allows it to capture
user input validation operations widely used in web applications. On the
other hand, SLSE is more restrictive than a word equation in that the
location where a variable can occur is restricted. We present the theory
of SLSE, and a recursive algorithm that can compute the solution pool of
an SLSE. Given the solution pool, any concrete variable solution can be
generated. The algorithm is implemented in a Java library called SUSHI.
SUSHI can be applied to vulnerability analysis and compatibility check-
ing. In practice, it generates command injection attack strings with very
few false positives.

1 Introduction

Defects in user input validation are usually the cause of the ever increasing at-
tacks on web applications and other software systems. In practice, it is interesting
to automatically discover these defects and show to software designers, step by
step, how the security holes lead to attacks. This paper is about one initial step
in answering the following question:

Given the bytecode of a software system, is it possible to automatically gen-
erate attack strings that exploit the vulnerability resident in the system?

A solution to the above problem that is both sound and complete is clearly
impossible, according to Rice’s Theorem. However, fragments of the general
problem may be decidable. This work is a part of our preliminary efforts [6,
7] for building a unified symbolic execution framework that can discoverer web
application vulnerabilities automatically. At critical points during a symbolic
execution [15], e.g., where a SQL query is submitted, path conditions are solved
to match attack patterns. Solving these equations leads to attack strings and
error traces that reveal vulnerabilities. This paper is about how to solve string
constraints. We study a variation of the general word equation problem called
Simple Linear String Equation (SLSE).

An automata based approach is taken to solve SLSE, where an SLSE is bro-
ken down into a number of atomic string operations. Then the solution process

consists of a number of backward image computation steps. This is quite differ-
ent from, e.g., the solution of word equations using Makanin’s algorithm [19],
because we take advantage of the fact that each variable occurs only once in an
SLSE. Given a set of strings R and a string operation f (e.g., substring and
charAt), the backward image of R w.r.t. f is a maximal set of strings X where
for each string s ∈ X : f(s) ∈ R. For most string operations, backward image
computation can be defined using regular expressions. Solving string substitution
can be realized using finite state transducer. String concatenation operations are
handled by graph search algorithm on automata. This paper has the following
contributions:

1. Simple Linear String Equation: SLSE was informally studied as a case
study in [6]. This paper formalizes the concept, and proposes a recursive
algorithm that computes the solution pool, which can be used for computing
any variable solution to the equation.

2. Precise Modeling of Regular Substitution: In [6, 7], only constant
string substitution is supported. This paper provides modeling of various
regular substitution semantics (e.g., greedy and reluctant) of Java regex
class, which avoids false positives in practice.

3. SUSHI library: A string solver library called SUSHI for SLSE equations is
constructed. The library can be used with symbolic execution engines, model
checkers, as well as manually.

The rest of the paper is organized as follows. §C2 defines the general model of
the string equation system. §C3 provides modeling of various java regex regular
replacement semantics. §C4 presents a recursive algorithm for computing the
solution pool of a simple linear string equation. §C5 introduces tool support and
case studies of SLSE. §C6 discusses related work. §C7 concludes.

2 String Equation System

In this section we define notations and terminologies that will be used throughout
the paper. Let N denote the set of natural numbers and Σ a finite alphabet. If
ω ∈ Σ∗, we say that ω is a word. Let R be the set of regular expressions over Σ.
If r ∈ R, let L(r) be the language represented by r. We abuse the notation by
writing ω ∈ r if ω ∈ L(r), when the context is clear that r is a regular expression.
We assume that there are infinitely many distinguishable string variables and let
this set of variables be denoted by V . We use O = {◦, [i, j], xr→ω, x−

r→ω, x+
r→ω}

to represent the set of string operators (semantics defined in §C2.2).

2.1 String Equations

Intuitively, a string expression is a regular expression over Σ with occurrences
of variables in V and [i, j] (substring) and xr→ω (replacement) operators.

Definition 1. Let E denote the set of string expressions, which is defined as
follows:

1. If x ∈ (V ∪ R), then x ∈ E.
2. If µ, ν ∈ E, then µν ∈ E.
3. If µ ∈ E, then µ[i, j] ∈ E.
4. If µ ∈ E, then µr→ω, µ−

r→ω, µ+
r→ω ∈ E for all r ∈ R and ω ∈ Σ∗.

5. Nothing else is in E except those described above.

Ambiguity can arise when infix notation is used without proper precedence,
e.g., for xy[0, 2] the substring operator can be applied to xy or y. Thus, we
sometimes write a string expression µ in postfix and let it be P(µ). Clearly,
P(µ) = (α1, α2, α3, . . . , αn) is a list of terms where for each 1 ≤ i ≤ n: αi ∈
V ∪ R ∪ O. For example, let µ = xy[0, 2], then P(µ) = (x, y, [0, 2], ◦), with ◦ for
concatenation, represents the case with substring applied to y only.

By convention, given µ ∈ E with P(µ) = (α1, . . . , αm), and 1 ≤ x1, . . . , xn ≤
m and s1, . . . , sn ∈ R, we use µ(x1/s1,x2/s2,...,xn/sn) to denote the object obtained
by replacing αx1 , αx2 , . . . , αxn

in P(µ) with s1, s2, . . . , sn, respectively. It is re-
quired that for 1 ≤ i ≤ n: αxi

∈ V ∪ R (i.e., operators will not be affected). We
then define several terms used for defining solutions of a string equation.

Definition 2. A mapping ρ is a set of tuples {(x1, s1), (x2, s2), . . . , (xn, sn)} ⊆
(V ∪ R) × R that satisfies the following: (i) ρ is single-valued, i.e., for any
xi, xj ∈ V with 1 ≤ i, j ≤ n: xi = xj iff i = j; and, (ii) ρ is consistent, i.e., if
xi ∈ R, then L(si) ⊆ L(xi).

In the definition above, being single-valued is a standard requirement to
have the mapping function well-defined. A variable used in constructing a string
equation should not be mapped to two values, however, a regular expression can.
Being consistent forces the replacement not to replace a regular expression by an
arbitrary string but confine the substitute within L(r). Consider the following
example. Let x ∈ V and a, b, c ∈ Σ, then ρ = {(x, ab), ((abc)∗, abcabc)} is a
mapping by Definition 2, however, ρ = {(x, ab), ((abc)∗, abcab)} is not because
abcab 6∈ L((abc)∗). A mapping itself cannot be used for defining a solution, as the
syntax “structure” information of string expression terms has not been attached
yet. For example consider a∗xa∗ with x ∈ V and a ∈ Σ, we need a way to
distinguish the two a∗’s before and after x.

Definition 3. Given a postfix string expression P(µ) = (α1, . . . , αm) and a
mapping ρ = {(x1, s1), . . . , (xn, sn)}, the structure labeling function that asso-
ciates P(µ) and ρ is a function B : [1, m] → [1, n] ∪ {⊥} which satisfies the
following. For any 1 ≤ u ≤ m: if B(u) 6= ⊥ then αu = xB(u). Then given ρ and
B, let D = {i | B(i) 6= ⊥} and |D| the size of D. The valuation function φρ,B(µ)
is defined as

φρ,B(µ) = µ(a1/sB(a1),a2/sB(a2),...,a|D|/sB(a|D|)
)

where for each 1 ≤ j ≤ |D|: aj is a distinct member of D.

Definition 4. A string equation is denoted by µ ≡ ν with µ, ν ∈ E. We say
that ρ ⊆ (V ∪ R) × R is a solution to the equation if there exists two structure
labeling functions B1 and B2 s.t. φρ,B1(µ) = φρ,B2(ν), and for every (xu, su) ∈ ρ
there exists j ∈ N s.t. B1(j) = u or B2(j) = u.

When context is clear we use φρ to denote a valuation function by omitting
the details of structure labeling. For example, let x, y ∈ V , a, b, c ∈ Σ, and
ρ = {(x, c), (ab, ab), (ca, ca), (y, b)}. One can verify that ρ is a solution to string
equation xab ≡ cay, since φρ(xab) = φρ(cay) = cab. Notice that a string equa-
tion, when treated as a string constraint, holds as long as there is a valuation
function that makes the left hand side (LHS) equivalent to the right hand side
(RHS), as regular expressions. Consider the equation a∗ ≡ a∗b∗, it has a solu-
tion {(a∗, a∗), (a∗b∗, a∗)}. We can directly extend the definition above to a string
equation system that is simply a finite set of string equations. We say that ρ is
a solution to a system iff ρ is a solution to every string equation in the system.

2.2 Semantics

We now define semantics of operators. Concatenation is represented using ◦. For
s ∈ Σ∗, s[i, j] denotes the substring of s starting from index i up to index j − 1
(included). If r ∈ R, then let r[i, j] = {s[i, j] | s ∈ r}. For s, ω ∈ Σ∗, and r ∈ R,
sr→ω denotes the set of all possible strings that can be obtained from s by sub-
stituting ω for every occurrence of a substring that matches L(r). Moreover, let
s−r→ω denote the string obtained with pure reluctant left-most pattern match-
ing procedure, and s+

r→ω with pure greedy left-most pattern matching procedure.
Formally, we denote the three regular replacement operators as follows:

Definition 5. Let s, ω ∈ Σ∗ and r ∈ R with ǫ 6∈ r. 4

sr→ω =

{

{s} if s 6∈ Σ∗rΣ∗;

{νr→ωωµr→ω

∣

∣ s = νβµ, β ∈ r} otherwise.

If sr→ω = {s}, then let s−r→ω = s+
r→ω = s; otherwise, define

– s−r→ω = νωµ−
r→ω where s = νβµ such that, ν 6∈ Σ∗rΣ∗, and β ∈ r,

and for every x, y, u, t, m, n with ν = xy, β = ut, and µ = mn: if y 6= ǫ then
yu 6∈ r and yβm 6∈ r; and if t 6= ǫ then u 6∈ r.

– s+
r→ω = νωµ+

r→ω where s = νβµ such that, ν 6∈ Σ∗rΣ∗, and β ∈ r,
and for every x, y, u, t, m, n with ν = xy, β = ut, and µ = mn: if y 6= ǫ then
yu 6∈ r and if m 6= ǫ then yβm 6∈ r.

For any s ∈ Σ∗, sr→ω is a set of words but s−r→ω and s+
r→ω are words.

Moreover, sr→ω is declarative while s−r→ω and s+
r→ω are procedural as they are

defined based on a reluctant and a greedy procedures, respectively, with left-most
pattern matching. One can verify that s−r→ω and s+

r→ω are uniquely defined for
any s ∈ Σ∗ and r ∈ R with ǫ 6∈ r. Consider the following two examples. (i) If
s = aaab, r = (aa|ab), and ω = c, then sr→ω = {cc, acb}, and s−r→ω = s+

r→ω = cc.
(ii) If s = aaa, r = a+, and ω = b, then sr→ω = {b, bb, bbb}, s−r→ω = bbb, and
s+

r→ω = b. We can extend the definition of replacement to set of words as follows.

Definition 6. Let S ⊆ Σ∗, r ∈ R and ω ∈ Σ∗, define (i) Sr→ω =
⋃

s∈S sr→ω,
(ii) S−

r→ω = {s−r→ω | s ∈ S}, and (iii) S+
r→ω = {s+

r→ω | s ∈ S}.

4 In practice, SUSHI uses extra finite state transducer filters for handling ǫ ∈ r. For
example, if s = a, r = a

∗, and ω = b, then in SUSHI s
−

r→ω
= bab, s

+
r→ω

= bb.

3 Modeling Regular Replacement

In this section we introduce an augmented finite state transducer model for
various string replacement semantics. Finite state transducer is widely used for
recognizing regular relations and for processing phonological rules [13]. We found
it also useful for string replacements.

Definition 7. Let Σǫ denote Σ∪{ǫ}. A finite state transducer (FST) is an en-
hanced two-taped nondeterministic finite state machine described by a quintuple
(Σ, Q, q0, F, δ), where Σ is the alphabet, Q the set of states, q0 ∈ Q the initial
state, F ⊆ Q the set of final states, and δ is the transition function, which is a
total function of type Q × Σǫ × Σǫ → 2Q.

By convention, let the second and third arguments of the transition function
come from the current symbols on first and second tapes, respectively. It is easy
to argue that with an appropriate coding method, adding an additional input
tape to the standard finite state machine does not enhance the power of a finite
state machine. What makes FST more powerful is to allow a transition based
on only one symbol from either one of the two tapes. For example, qj ∈ (qi, a, ǫ)
means that if the current symbol in the first input tape is a, the machine can
transfer from state qi to qj without reading (i.e., consuming) the current symbol
in second tape.

Let L1 and L2 be two languages. If an FST, M , accepts (ω1, ω2) iff (ω1, ω2) ∈
L1×L2, we say that M recognizes the language pair (L1, L2), and is denoted by
ML1×L2 . It is straightforward to argue that, L1 and L2 are regular iff ML1×L2

exists. For convenience, we can extend the transition labels to regular relations,
obtaining an augmented FST, denoted by AFST.

Definition 8. An augmented finite state transducer (AFST) is an FST (Σ, Q, q0,
F, δ) with the transition function augmented to type Q × R → 2Q, where R is
the set of regular relations over Σ.

Note that, while we have tried to keep our setup as general as possible, we
would often restrict the transition function of an AFST to the following two
types: (1) Q × R × Σ∗ → 2Q. In a transition diagram, we label the arc from qi

to qj for transition qj ∈ δ(qi, r, ω) by r : ω; and (2) Q × {Id(r) | r ∈ R} → 2Q

where Id(r) = {(ω, ω) | ω ∈ L(r)}. In a transition diagram, an arc of type (2) is
labeled as Id(r).

Id(* - * r *) r : !
Id(* - * r *)

":"

1 2 34

Fig. 1. An FST for sr→ω

c:c b:b 0 :

1

1

2

2 1

3

3 1

4

4 1

5

5 1

c:c b:b a:a :#

c:c b:b

 : :

1 2,1 3,1 4,1 5,1

b:b
a:a

c:c
a:a

a:a

c:c

b:b A

Fig. 2. An FST for Inserting Begin Markers

Now, we can use an AFST to model the declarative string replacement sr→ω

for any ω ∈ Σ∗ and r ∈ R (with ǫ 6∈ r). Figure 1 shows the construction, which
presents an AFST that accepts {(s, η) | s ∈ Σ∗ and η ∈ sr→ω}. In other words,
given any two s, η ∈ Σ∗, we can use the AFST to check if η is a string obtained
from s by replacing every occurrence of patterns in r with ω. We alternatively
use FST and AFST for the time being without loss of generality since it is clear
that every AFST has an corresponding FST to recognize the same language pair.

The AFST in Figure 1 uses nondeterminism to handle the declarative na-
ture of sr→ω. It is known that the nondeterministic transducer (NFST) is more
powerful than the deterministic one (DFST), which differs with the well known
fact that DFA and NFA are equivalent. In [9] we show that certain fragments of
the general problem can be modeled using deterministic finite state transducer
(DFST) under certain restrictions. Next we briefly discuss the construction of
FST for modeling the procedural semantics.

3.1 Modeling Procedural Regular Replacement

Finite state transducers can be constructed for modeling both the pure reluctant
and greedy semantics. We briefly describe the main idea of the construction
algorithm, and the complete details can be found in our technical report [9]. We
fix some notations first. Given two FST’s M1 and M2, let M1||M2 denote a FST
such that,

L(M1||M2) = {(s, ω) | (s, η) ∈ L(M1) and (η, ω) ∈ L(M2) for some η}

Intuitively, M1||M2 pipes the contents of the second tape of M1 into the
first tape of M2, and simulates M1 and M2 in parallel. Clearly, L(M1||M2)
represents the composition of two regular relations. The construction algorithm
can be found in [13].

The key to modeling greedy and reluctant semantics is to capture the left-
most matching. Let # 6∈ Σ be a special “begin marker”, and $ 6∈ Σ be the
special “end marker”. Given a word ω ∈ (Σ ∪ {#, $})∗, the projection operator
π(ω) produces a word ω′ ∈ Σ∗ s.t. all markers are removed from ω.

A begin marker inserter A (an FST on alphabet Σ∪{#}) can be constructed
for marking the beginning of pattern r ∈ R in any words s ∈ Σ∗ s.t. for each
(s, η) ∈ L(A) the following are satisfied: (i) s = π(η); and (ii) if η[i] = #
then π(η[i+1, |η|]) ∈ rΣ∗, and (iii) every # in η is not immediately preceded or
followed by another #. For example, the FST A in Figure 2 marks the beginning
of regular pattern a+b+c. For instance, (aabbcc, #a#abbcc) ∈ L(A).

With begin marker inserter A, the reluctant semantics can be modeled by
piping A with another transducer A2, which, whenever sees a begin marker
#, enters the state of conducting the replacement (note extra markers have to
be removed during replacement process), and whenever a regular pattern r is
matched, enters immediately (i.e., without waiting for longer matches) the status
waiting for #. A || A2 allows to precisely model the pure reluctant semantics. The
modeling of greedy semantics relies more on the power of nondeterminism and
needs the composition of several more transducers. First, an end marker inserter
nondeterministically inserts end markers after pattern r in the input word. Then
a number of filter transducers are composed to identify the “longest” match and
remove extra markers. We omit the details here for space limit and details of the
construction algorithm can be found in our technical report [9].

Lemma 1. For any r ∈ R and ω ∈ Σ∗ the following three finite state trans-
ducers Mr→ω, M−

r→ω, M+
r→ω can be constructed s.t. for any s, η ∈ Σ∗ (i)

(s, η) ∈ L(Mr→ω) iff η ∈ sr→ω; and (ii) (s, η) ∈ L(M−
r→ω) iff η = s−r→ω; and

(iii) (s, η) ∈ L(M+
r→ω) iff η = s+

r→ω.

4 Simple Linear String Equation

In this section we narrow down our scope to a kind of simplified liner string equa-
tions called Simple Linear String Equations (SLSE). Compared to the general
string equations given in Definition 1, SLSE is easy to solve and yet it suffices
to formulate, for example, command injection security problems in many web
applications. Our approach is to break SLSE into several basic cases and then
combine their solutions to obtain the general solution. We define SLSE as follows.

Definition 9. A Simple Linear String Equation (SLSE) µ ≡ r is a string equa-
tion such that µ ∈ E, r ∈ R provided that every string variable occurs at most
once in µ.

Definition 10. Let µ ≡ r be an SLSE. We say that ρ is a variable solution to
µ ≡ r iff ρ = τ ∩ (V × R) and τ is some solution to µ ≡ r.

Definition 11. Let µ ≡ r be an SLSE and suppose string variable v occurs in
µ. The solution pool for v, denoted by sp(v), is defined as follows.

sp(v) = {ω | ω ∈ r2 and (v, r2) ∈ ρ where ρ is a variable solution to µ ≡ r}

It is shown later that sp(v) is a regular language for any SLSE. In the follow-
ing discussion, we will describe an algorithm that takes an SLSE as input and
constructs as output regular expressions that represent the solution pools for all
string variables in the equation.

4.1 Solving Basic Case of SLSE

According to Definition 1, E is constructed recursively based on the atomic case
(rule 1) and three operations: concatenation (rule 2), substring (rule 3), and
string replacement (rule 4). Thus, solving an SLSE can be reduced to solving
the four basic cases. The atomic case is trivial. That is, for SLSE E ≡ r if E = x
and x ∈ V , then the solution pool of x is simply L(r).

Substring case: µ[i, j] ≡ r where µ ∈ E and i, j ∈ N with i ≤ j. The following
equivalence is straightforward by which we can remove a substring operator.

Equivalence 1 For any SLSE of the form µ[i, j] ≡ r where µ ∈ E and i, j ∈ N
with i ≤ j, ρ is a variable solution to µ[i, j] ≡ r iff it is a variable solution to
µ ≡ Σir[0, j − i]Σ∗.

In the following easy example, we will see how to put Definitions 1, 2, 4, 11
into the picture. Consider SLSE x[2, 4] ≡ ab∗ where x ∈ V and a, b ∈ Σ. Using
Equivalence 1 we obtain x ≡ Σ2ab∗[0, 2]Σ∗ and hence sp(x) = Σ2abΣ∗. Consider
an arbitrary word in sp(x), e.g., x = ccabccc. Let τ = {(x, ccabccc), (ab∗, ab)}.
According to Definitions 2 and 4, the mapping τ is well-defined and it is a solution
to x[2, 4] ≡ ab∗, since φτ (x[2, 4]) = ccabccc[2, 4] = ab = φτ (ab∗). According to
to Definition 10, ρ = τ ∩ (V × R) = {(x, ccabccc)} is a variable solution to the
equation. Finally, according to Definition 11, ccabccc ∈ sp(x).

Concatenation case: µν ≡ r where µ, ν ∈ E. The equivalence is obvious when
ν ∈ R. Consider xr1 ≡ r2 where x ∈ V and r1, r2 ∈ R. By convention, we denote
the quotient of r2 with respect to r1 by r2/r1. We know that if r1 and r2 are
regular, so is r2/r1. In this trivial case, sp(x) = r2/r1. Regular quotient can be
easily computed using a graph search on automata, e.g., as shown in [6]. Thus,
we have the following equivalence.

Equivalence 2 For any SLSE of the form µr1 ≡ r2 where µ ∈ E and r1, r2 ∈ R,
ρ is a variable solution to µr1 ≡ r2 iff ρ is a variable solution to µ ≡ r2/r1.

For the general concatenation case, we can reduce it to the case in Equivalence
2 by using other equivalences first.

Replacement case: µr1→ω ≡ r2 where µ ∈ E, r1, r2 ∈ R, and ω ∈ Σ∗. We
also discuss the cases for procedural replacements. Clearly, a possible solution
to xr1→ω = r2 is a word s such that sr1→ω ⊆ L(r2). Thus, sp(x) = {s | sr1→ω ⊆
L(r2)}. Our goal is to construct an FST that accepts only (s, η) such that η ∈
L(r2) and η is obtained from s by replacing every occurrence of patterns in r1

with ω. In other words, we want an FST, denoted by Mr1→ω ⇒r2 s.t.

(s, η) ∈ L(Mr1→ω ⇒r2) ⇔ η ∈ L(r2) and η ∈ sr1→ω

We now construct Mr1→ω ⇒r2 . Let M1 be the FST that accepts the identity
relation {(s, s) | s ∈ L(r2)}. Let Mr1→ω be the FST shown in Figure 1, i.e.,
(s, η) ∈ L(Mr→ω) iff η ∈ sr1→ω. It is clear that Mr1→ω ⇒r2 is constructed

as Mr→ω||M1. Similarly, for the pure reluctant semantics, M−
r1→ω ⇒r2

can be
constructed as M−

r1→ω||M1 (where M−
r1→ω is defined in Lemma 1). Clearly, the

following is true:

(s, η) ∈ L(M−
r1→ω ⇒r2

) ⇔ η = s−r1→ω ∈ L(r2)

The FST M+
r1→ω ⇒r2

can be defined similarly for the greedy semantics.

Equivalence 3 For any SLSE of the form µr1→ω ≡ r2 where µ ∈ E, r1, r2 ∈ R,
and ω ∈ Σ∗. ρ is a variable solution to µr1→ω ≡ r2 iff it is a variable solution
to µ ≡ r where L(r) = {s | (s, η) ∈ L(Mr1→x ⇒r2)}.

Clearly, L(r) can be easily computed by projecting the FST Mr1→x ⇒r2 to
its input tape, which results in a finite state machine. The same applies to the
pure greedy and reluctant semantics, using M+

r1→ω ⇒r2
and M−

r1→ω ⇒r2
. Based

on Equivalences 1,2, and 3, it is clear that we can develop a recursive algorithm
for generating the solution pool for all variables in an SLSE. Given the solution
pool, any concrete solution can be generated by concretizing the valuation of
a variable one by one (and replacing the variable with its valuation). Starting
from the solution pool, the concretization process will always terminate with a
concrete solution generated [9].

5 Tool Support and Case Study

SLSE has been completely implemented in a Java library called SUSHI [8].
SUSHI can be called as a back-end constraint solver by model checkers and
symbolic execution engines. This section presents the experimental results and
case study examples on its applications.

 0

 5000

 10000

 15000

 20000

 25000

 0 5 10 15 20 25 30 35 40 45 50

T
ra

ns
iti

on
s

n

Max FST Transitions

eq1
eq2
eq3
eq4
eq5

 0

 50

 100

 150

 200

 250

 300

 0 5 10 15 20 25 30 35 40 45 50

T
ra

ns
iti

on
s

n

Max FSA Transitions

eq1
eq2
eq3
eq4
eq5

 0

 100

 200

 300

 400

 500

 600

 700

 0 5 10 15 20 25 30 35 40 45 50

S
ec

on
ds

n

Time

eq1
eq2
eq3
eq4
eq5

ID Equation
eq1 x ◦ a{n, n} ≡ (a|b){2n, 2n}
eq2 x[n, 2n] ≡ a{n, n}
eq3 x ◦ a ◦ y[0, n] ≡ b{n, n}ab{n, n}

eq4 x+

a+→b{n,n}
≡ b{2n, 2n}

eq5 uname=’ ◦ x−
′→′′ [0, n] ◦ ’ pwd=’ ≡ uname=’[^’|’’]∗’

Fig. 3. Running Statistics

5.1 Experiments

SUSHI relies on dk.bricks.automaton package [21] for manipulating FSA and
a self-made package for supporting FST operations. In Figure 3 we listed five
SLSE equations for stress-testing the SUSHI package and the running statistics.
Note that each equation is parametrized by an integer n. For clarity, constant
words are not wrapped with double quotation.

Clearly, the sample set covers substring, replacement, concatenation,
and the hybrid use of these operations. In the experiment, the value of n ranges
between 1 to 50. For example, when n is 50, the length of right hand side of eq4
is 100. In Figure 3, the first diagram presents the max number of transitions
of FSTs used in solving the equation. The second diagram presents the size of
the max FSA used for representing solution pool(s). The last diagram shows the
time spent on running each test.

Notice that for eq1 and eq2, FST is not involved in the solution process, thus
the max size of FST for these two equations is 0. Interestingly FST is used in
solving eq3 for the forward computing of y[0, n]. Another observation is that the
complexity of the computation is mainly decided by the the complexity of the
automata structure of the resulting solution. For example, the solution cost of
eq4 is higher than eq5. This is because when solving the atomic case of regular
replacement, the cost of eq4 is higher than eq5, as the RHS (of the replacement
equation for eq4) is much more complex.

5.2 Case Study

We present two case study examples of SUSHI on discovering delicate XSS and
SQL injection vulnerabilities.

Generating XSS Exploits: In many cases, when automated program analysis
tools are not available (e.g., for handling rich and loosely typed languages such
as JavaScript), SUSHI is a handy tool for manually analyzing programs. In
the following we give one example of analyzing one recently discovered XSS
vulnerability [17] in Adobe Flex SDK 3.3.

In Adobe Flex SDK, a file named index.template.html is used for gener-
ating wrappers of application files in a FLEX project. It takes a user input in
the form of “window.location” (URL of the web page being displayed), which
is written into the DOM structure of the html file using document.write(str).

Clearly, the unfiltered input could lead to XSS (a tainted analysis [22] could
identify the vulnerability). However, to precisely craft a working exploit is still
not a trivial work, as several constraints have to be satisfied before the injected
JavaScript code could work. For example, the injected JavaScript tag should
not be contained in the value of an HTML attribute (otherwise it will not be
executed). In addition, the resulting HTML should remain syntactically correct,
at least until the parser reaches the injected JavaScript code.

SUSHI can help generating the attack string precisely. In fact, SUSHI gen-
erates the following attack string which is, first of all working, and is shorter (if

not the shortest) than the exploit given in the original securitytracker post [17].
Note that the first double quote is necessary for the exploit to work.

\”<s c r i p t >a l e r t (’XSS found ! ’) </ sc r i p t >

In the following, we briefly describe the SLSE equation constructed for gen-
erating the exploit. The SLSE equation is manually constructed, however, the
construction can be automated if model checker or symbolic execution tools for
JavaScript exist. In addition, the right hand side of the equation (a collection of
attack patterns) can be easily reused.

Rule Regular Expression Pattern

Attack .*<script>alert(’XSS found!’)</script>.*

EffectiveScript .*[a-zA-Z0-9]+ *= *"[^"]*<script.*>.*

MatchTag .*<embed[^<>]*>.* ∩ .*</embed[^<>]*>.*

The LHS of the equation is a conjunction of three strings, two constant
words and one variable. The variable represents the unsanitized user input. The
two constant words represents the other parts of the parameters collected and
combined by the vulnerable Javascript code snippet. The size of LHS is 445
characters long. The RHS is a conjunction of the following attack patterns and
filter rules as shown in the following.

The attack pattern is straightforward. It requires that the JavaScript alert()
function eventually shows up in the combined output. Note that in the above
table we omitted details of escaping forms, e.g., “(” should be actually escaped
because it is a control symbol in java regex. Then the attack pattern has to
be bounded by a number of rules for precisely generating the attack string: (1)
the EffectiveScript rule forbids the JavaScript snippet to be embedded in any
HTML attribute definition (thus ineffective); and, (2) the MatchTag rule requires
that an HTML beginning tag must be matched by an ending tag (in our case the
“<embed>” tag is the only one involved). Clearly, the above rules are general and
can be applied to analyzing other XSS attacks. The cost of finding the shortest
solution is shown below.

FST States FST Trans FSA States FSA Trans Time (seconds)
0 0 272 4217 74.109

Bypassing Password Checking: The second case study BadLogin is adapted
from our previous work [6]. Notice that the proposed informal algorithm in the
same paper cannot generate all possible attack strings, while our new theory
introduced in this paper can. Consider the two program snippets in Listing 5.1.

The first snippet constructs a SQL query for authenticating a user by compar-
ing the user supplied password with the information from the back-end database.
It calls a massage() function (snippet 2) for sanitizing user input. Since single
quote characters are used frequently by hackers, the massage() function re-
places each single quote character with its escaping form (a sequence of two
single quotes). Then it restricts the user input to a maximal length of 16.

// snippe t 1 .
”SELECT uname , pwd FROM use r s \n WHERE uname=’”
+ massage (sUname) + ” ’ AND pwd=’” + massage (sPwd) + ” ’ ”

// snippe t 2 .
St r i ng massage (S t r i ng s t r Inpu t) {
St r i ng sOut = st r Inpu t . r e p l a c eA l l (” ’ ” , ” ’ ’ ”) ;
i f (sOut . l ength () >16) return sOut . sub s t r i ng (0 , 1 6) ;
else return sOut ;

}

Listing 5.1. Vulnerable Authentication

The length restriction protection, however, leads to vulnerability. Solving the
following SLSE can directly lead to attack strings.

uname=’ ◦ x−
′→′′ [0, 16] ◦ ’ AND pwd=’ ◦ y−

′→′′ [0, 16] ◦ ’ ≡ uname=’([^’]|’’)∗’ OR
∗
uname<>’’

The LHS is a concatenation of five string terms, with the ◦ operator denot-
ing concatenation. The second term x−

′→′′ [0, 16] represents the massaged user
input (after replacement of single quote and substring operation). Similar is the
fourth term y−

′→′′ [0, 16]. Note that each constant word is not delineated by dou-
ble quotes for clarity. The RHS is a regular expression that represents an attack
pattern. It asks: after applying the string massage operations on the user input
(represented by variables x and y), is it feasible to bypass password checking
and make the WHERE clause of the SQL query essentially a tautology in practice
(by “OR uname<>’’”).

In [6], a pair of attack strings of length 16 are given. By using the algorithm
presented in this paper, we are able to generate the shortest attack strings (not
wrapped by double quotes) as shown below.

x = a’’’’’’’’

y = ’’ OR uname<>’

By applying the massage() function on x (i.e., sUname), each of the 8 single
quotes in x is converted to a sequence of two quotes. However, the last quote
is chopped off by the substring() function (at the 16’th character as shown in
Listing 5.1). This results in the following SQL query, which bypasses password
checking. Notice that the logical structure of the WHERE clause has been changed
by the attack string.

SELECT uname , pwd FROM use r s
WHERE uname=’ a ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ AND pwd=’ ’ ’ ’ ’ OR uname<> ’ ’

The delicate vulnerability discussed in this section cannot be discovered by
black-box testing like [12, 5, 23], because without prior knowledge of the imple-
mentation of massage(), it is very hard to craft the malicious strings that could
pass the sanity check performed by massage(). The cost of solving the equation
is displayed as below. The tables displays the max size of FSAs/FSTs used in
the solution process.

FST States FST Trans FSA States FSA Trans Time (seconds)
238 1634 17 62 1.39

6 Related Work

String analysis, i.e., analyzing the set of strings that could be produced by a pro-
gram, emerged as a novel technique for analyzing web applications, e.g., compat-
ibility check of XHTML files against schema [3], security vulnerability scanning
[6, 10], and web application verification [25, 1]. In general, there are two interest-
ing directions of string analysis: (1) forward analysis, which computes the image
(or its approximation) of the program states as constraints on strings and other
primitive data types; and (2) backward analysis, which usually starts from the
negation of a property and computes backward. While most of the related work
(e.g., [3, 4, 16, 25, 1]) fall into the category of forward analysis, our preliminary
work [6, 7] and the research presented in this paper are backward.

It is worthy of note that, unlike symbolic model checking on Boolean pro-
grams (e.g., using BDD) and integer programs (e.g., using Presburger arith-
metic), where backward analysis can be easily leveraged from forward analysis
via the use of existential quantification, there is a huge gap between the for-
ward and backward image computations for strings. Concerning forward analy-
sis, the main focus is on fixpoint computation (or approximation). For exam-
ple, Christensen et al. [4] used Mohri-Nederhof algorithm [20] to approximate
from context-free languages to regular. Yu, Bultan, and Ibarra achieved for-
ward fixpoint computation via widening technique for multi-tape automata [25].
The backward analysis of string equation systems can be very different as solv-
ing string constraints can be very challenging. Compared with forward string
analysis, this research is able to generate attack strings as hard-evidence of a
vulnerability. However, it suffers from false-negatives, i.e., there are cases that
vulnerabilities are ignored by the analysis.

This paper adopts an automata based approach for solving simple linear
string equations. SLSE can be regarded as a variation of the word equation
problem [18]. Note that in a word equation, only word concatenation is allowed.
In SLSE, various popular java.regex operations are supported. It is proved by
Makanin that word problem is decidable and NP-hard [19]. However, extension
of word equations can easily lead to undecidability. For example, the ∀∃3-theory
of concatenation and word length predicates (according to [18]). Our intuition
is that for many scenarios in web security, certain fragments of string equations
suffice, e.g., the SLSE framework proposed in this paper, the fixed-length core
string language in [1], and the unbounded string and size analysis [25].

Solving string constraints is one of the many directions for tackling command
injection attacks (e.g., tainted analysis [22], forward string analysis [4], run-time
hardening [11]), black-box testing [12]). Clearly, the string constraint solving
technique can be applied to handling other problems in software engineering
(e.g., symbolic model checking and symbolic execution).

SUSHI is a continuation of our earlier efforts of building a unified symbolic
execution framework [6, 7] for detecting command injection attacks. There are
similar efforts in the area. For example, Yu et al. proposed language based re-
placement in combining forward and backward string analysis [24]. Kieżrun et
al. used symbolic tracking of taint information for discovering SQL injection

and XSS attacks [14]. Brumley et al. applied symbolic execution for analyzing
binary program and can identify attack signatures for buffer overflow [2]. The
uniqueness of SUSHI is its ability to precisely model various string substitution
semantics in java regex, which avoids false positives during security analysis.

7 Conclusion

This paper introduces a general framework called string equation for modeling
attack patterns. We show that a fragment called Simple Linear String Equation
can be solved using automata based approach. Finite state transducer is used for
precisely modeling several different semantics of regular substitution. The SLSE
constraint solver is implemented and it is applied to analyzing security of Java
web applications. The experimental results showed that the SLSE constraint
solver works efficiently in practice and can discover security vulnerabilities that
are hidden deeply in user input validation code.

References

1. Nikolaj Bjørner, Nikolai Tillmann, and Andrei Voronkov. Path feasibility analysis
for string-manipulating programs. In Proceedings of the 15th International Con-
ference on Tools AND Algorithms for the Construction and Analysis of Systems
(TACAS 2009), pages 322–336. Springer, 2009.

2. David Brumley, Hao Wang, Somesh Jha, and Dawn Song. Creating vulnerability
signatures using weakest preconditions. In Proceedings of the 20th IEEE Computer
Security Foundations Symposium (CSF’07), pages 311–325, 2007.

3. A. Simon Christensen, A. Møler, and M. I. Schwartzbach. Extending java for high-
level web service construction. ACM Trans. Program. Lang. Syst., 25(6):814–875,
2003.

4. Aske Simon Christensen, Anders Møller, and Michael I. Schwartzbach. Precise
analysis of string expressions. In Proc. 10th International Static Analysis Sym-
posium, SAS ’03, volume 2694 of LNCS, pages 1–18. Springer-Verlag, June 2003.
Available from http://www.brics.dk/JSA/.

5. CIRT INC. Nikto. available at http://www.cirt.net/nikto2.

6. X. Fu, X. Lu, B. Peltsverger, S. Chen, K. Qian, and L. Tao. A Static Analysis
Framework for Detecting SQL Injection Vulnerabilities. In Proceedings of 31st An-
nual International Computer Software and Applications Conference (COMPSAC
2007), pages 87 – 96, 2007.

7. X. Fu and K. Qian. SAFELI: SQL injection scanner using symbolic execution.
In Proceedings of the 2008 workshop on testing, analysis, and verification of web
services and applications (TAV-WEB 2008), pages 34–39, 2008.

8. Xiang Fu. Sushi - a solver for single linear string equations. http://people.

hofstra.edu/Xiang_Fu/XiangFu/projects.php, 2009.

9. Xiang Fu and Chung chih Li. On regular replacement operators. http://people.
hofstra.edu/Xiang_Fu/XiangFu/publications/techrep09.pdf, 2009.

10. C. Gould, Z. Su, and P. Devanbu. JDBC Checker: A Static Analysis Tool for
SQL/JDBC Applications. In Proceedings of the 26th International Conference on
Software Engineering, pages 697–698, 2004.

11. W. Halfond and A. Orso. AMNESIA: Analysis and Monitoring for NEutraliz-
ing SQL-Injection Attacks. In Proceedings of the 20th IEEE/ACM international
Conference on Automated Software Engineering, pages 174–183, 2005.

12. Y.W. Huang, S.K. Huang, T.P. Lin, and C.H. Tsai. Web application security
assessment by fault injection and behavior monitoring. In Proceedings of the 11th
International World Wide Web Conference (WWW 2003), 2003.

13. Ronald M. Kaplan and Martin Kay. Regular models of phonological rule systems.
Computational Linguistic, 20(3):331–378, 1994.

14. Adam Kieżun, Philip J. Guo, Karthick Jayaraman, and Michael D. Ernst. Au-
tomatic creation of SQL injection and cross-site scripting attacks. In ICSE’09,
Proceedings of the 30th International Conference on Software Engineering, Van-
couver, BC, Canada, May 20–22, 2009.

15. J. C. King. Symbolic execution and program testing. Communications of the ACM,
19(7):385–394, 1976.

16. Christian Kirkegaard and Anders Møller. Static analysis for Java Servlets and JSP.
In Proc. 13th International Static Analysis Symposium, SAS ’06, volume 4134 of
LNCS, August 2006.

17. labs@gdssecurity.com. Adobe flex sdk input validation bug in ’index.template.html’
permits cross-site scripting attacks. http://www.securitytracker.com/alerts/

2009/Aug/1022748.html, 2005.
18. M. Lothaire. Algebraic Combinatorics on Words. Cambridge University Press,

2002.
19. G. S. Makanin. The problem of solvability of equations in a free semigroup. Math.

USSR Sb., 32:129–198, 1977.
20. M. Mohri and M. J. Nederhof. Regular approximation of context-free grammars

through transformation. Robustness in Language and Speech Technology, pages
153–163, 2001.

21. A. Møller. The dk.brics.automaton package. available at http://www.brics.dk/
automaton/.

22. A. Nguyen-Tuong, S. Guarnieri, D. Greene, J. Shirley, and D. Evans. Automatically
hardening web applications using precise tainting. In Proceedings of the 20th IFIP
International Information Security Conference, 2005.

23. SPI Dynamics. Webinspect: Security throughout the application lifecy-
cle. Datasheet. http://www.spidynamics.com/assets/documents/WebInspect_

DataSheets.pdf.
24. Fang Yu, Muath Alkhalaf, and Tevfik Bultan. Generating vulnerability signatures

for string manipulating programs using automata-based forward and backward
symbolic analyses. In Proceedings of the 24th IEEE/ACM International Conference
on Automated Software Engineering (ASE 2009), 2009.

25. Fang Yu, Tevfik Bultan, and Oscar H. Ibarra. Symbolic string verification: Com-
bining string analysis and size analysis. In Proceedings of the 15th International
Conference on Tools AND Algorithms for the Construction and Analysis of Sys-
tems (TACAS), pages 322–336. Springer, 2009.

