
ACCEPTED TO IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC 2006), ISTANBUL, TURKEY, 2006. 1

A LCG-based Secure Protocol for Wireless Sensor
Networks

Bo Sun, Chung-Chih Li
Dept. of Computer Science

Lamar University
Beaumont, TX, USA 77710
{sunbx, licc}hal.lamar.edu

Kui Wu
Dept. of Computer Science

University of Victoria
BC, Canada V8W 3P6

wkui@cs.uvic.ca

Yang Xiao
Dept. of Computer Science
The University of Memphis
Memphis, TN, USA 38152

yangxiao@ieee.org

ABSTRACT - In this paper, based on a Linear Congruential
Generator (LCG), we propose a new block cipher that is suit-
able for constructing a lightweight secure protocol for resource-
constrained wireless sensor networks. Based on the Plum-
stead’s inference algorithm, we are motivated to embed the gen-
erated pseudo-random numbers with sensor data messages in
order to provide security. Specifically, the security of our pro-
posed cipher is achieved by adding random noise and random
permutations to the original data messages. The analysis of our
cipher indicates that it can satisfy the security requirements of
wireless sensor networks. We demonstrate that secure protocols
based on our proposed cipher satisfy the baseline security re-
quirements: data confidentiality, authenticity, and integrity with
low overhead. Performance analysis demonstrates that our pro-
posed block cipher is more lightweight than RC5 in terms of
the number of basic operations.
Keywords - Wireless Sensor Networks, Linear Congruential
Generator, Security

I. INTRODUCTION

Wireless Sensor Networks (WSNs) have been used for a
wide variety of applications [1]. In hostile and un-trusted en-
vironments such as battlefield surveillance, an adversary can
eavesdrop on traffic, inject new messages, and replay old mes-
sages. Therefore, it is necessary to incorporate appropriate se-
cure mechanisms into WSNs. However, given the stringent
constraints on processing power, memory, bandwidth, and en-
ergy consumption, it is very difficult to design suitable secure
mechanisms for WSNs.

The constraints posed by the sensor hardware make it im-
possible to deploy most of the traditional security primitives
and protocols, such as the RSA [17] and Diffie-Hellman algo-
rithm [20], because they require expensive computations and
long messages that could easily exhaust the sensor’s resources.
Symmetric cryptography can be used in WSNs. For example,
SPINS [10] used RC5 [14] as the block cipher. TinySec [12]
used Skipjack [18] as the default block cipher. The performance
of the proposed security protocols depends heavily on the en-
cryption primitives themselves.

In this paper, we take a different step to tackle the security
problems for WSNs. We aim at proposing a more lightweight
block cipher that is suitable for WSNs. We are motivated by the

fact that a suitable lightweight block cipher can significantly re-
duce the overhead of the security protocols built on it. There-
fore the overall performance can be improved dramatically.

Specifically, we propose a lightweight block cipher that is
based on a Linear Congruential Generator (LCG) [20]. In the-
ory, cryptosystems based on a pseudo-random number genera-
tor (PRNG) (for example, LCG) are not suggested because they
are predictable [3]. However, after properly arranging the use
of numbers generated by a LCG, we can not only achieve the
desirable security properties but also enjoy the high efficiency
provided by a LCG. Utilizing the simplest form of a LCG and
based on the experiment from the Plumstead’s algorithm [5],
we demonstrate that it is impossible to significantly enhance the
security of the system simply by increasing the size of the mod-
ulus. By adding random noise generated by a LCG and random
permutations to sensor data messages, we demonstrate that our
proposed cipher is secure enough for WSNs. At the same time,
it can also reduce the cost of security provision. We compare
the number of basic operations of our proposed cipher with that
of RC5, which is one of the most commonly used algorithms in
security protocols for wireless sensor networks [10]. Analyti-
cal results demonstrate that our proposed block cipher is more
lightweight than RC5.

II. SECURITY GOALS

• Confidentiality: One goal of our protocol is that sensor
readings/data cannot be disclosed to attackers. Another
stronger requirement, which is also our goal, is Semantic
Security, which ensures that an adversary has no informa-
tion about the plaintext, even if it sees multiple encryptions
of the same plaintext [21].

• Integrity: It makes sure that if an adversary modifies a data
message from an authentic sender, the receiver should be
able to detect this tampering.

• Authenticity: It ensures that data messages come from the
intended sender. Authenticity can prevent some third party
from injecting falsified messages into the network.

III. KEYING MECHANISMS

Our protocol assumes the existence of a key management
scheme and can work well with any of key management proto-
cols. The easiest key management scheme is to use a network-
wide shared key among all the nodes. However, the compro-
mise of any single node can paralyze the whole network.

ACCEPTED TO IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC 2006), ISTANBUL, TURKEY, 2006. 2

A more robust approach is for groups of neighboring nodes to
share a key. In this way, a compromised node can only decrypt
the messages from nodes in its group, and cannot decrypt mes-
sages from other groups and cannot inject falsified messages
into other groups.

The most robust but the most complicated approach is for
WSN nodes to set up pairwise keys on the fly. It can effectively
defend against node capture attacks.

We assume that there exists a key management sub-system
that makes it possible for WSN nodes to negotiate the key setup
and bootstrap the corresponding trust relationship. This is a rea-
sonable assumption given the fact that research regarding the
group key and pairwise key setup has been carried out exten-
sively [10] [11]. They could be utilized to provide a security
service to our protocol.

IV. LCG-BASED SECURITY PROTOCOLS

A. Why selecting LCG

Almost every cryptosystem needs a source of random num-
bers either in constructing keys for encryption algorithms or in
generating enough randomness for scrambling the sensitive in-
formation. Many Pseudo-Random Number Generators (PNRG)
have been introduced for practical purposes.

It is easy for us to think of linear algorithms when efficiency
and simplicity come to our top priorities. However, a close
examination of some widely used linear PRNGs listed in [2]
shows that they are all proven to be cryptographically insecure.
For example, most commercial Linear Congruential Generators
(LCG) do not intend to be used for cryptographic purposes [2].
A series of investigations of LCGs in late 80’s and early 90’s
have been done and raised a substantial doubt about using LCGs
in any cryptosystem.

However, this is based on the assumption that an enough
amount of sequences generated by a fixed PRNG is known to
the attacker. If we can use the information itself to protect the
random sequences, we can use the linear PRNGs as an efficient
mechanism to protect the data transmission in wireless sensor
networks. Motivated by this, we pick up the LCG in its sim-
plest form to produce pseudo-random numbers. The reason we
select the LCG is because it is the simplest, most efficient, and
a well-studied pseudo-random number generator.

B. Linear Congruential Generators

The simplest form of a LCG uses the following equation:

Xn+1 = aXn + b mod m, n = 0, 1, 2, . . . (1)

where a is the multiplier, b is the increment, and m is the
modulus. Xn and Xn+1 are the nth and (n + 1)st numbers, re-
spectively, in the sequence generated by the LCG. X0 is called
the seed of the LCG. X0, a, b, and m are the parameters. The
statistical properties of the pseudo-random numbers generated
by an LCG depend on the selection of its parameter [3].

1) Predictability of LCGs: In order to properly arrange the
use of pseudo-random numbers generated by a LCG, we need
experimental results to decide how many numbers are actu-
ally needed to successfully infer the entire sequence. Because
of this, we implement the Plumstead’s inference algorithm [5]
against the LCG in its easiest form as shown in Equation (1).
We implement the algorithm to observe how many pseudo-
random numbers are actually needed for successfully recover-
ing the parameters of an unknown LCG, so we can adequately
adjust our cipher to meet the security requirements.

2) Plumstead’s Algorithm: Assume Equation (1) is a LCG
with the fixed parameters a, b, m, and X0, where m >
max(a, b, X0). The algorithm will find a congruence Xn+1 =
âXn + b̂ mod m, possibly with a different multiplier and
increment but generating the same sequence as the fixed con-
gruence does. The inference consists of two stages as follows.

Let Yi = Xi+1 − Xi.
• Stage I: In this stage, we find â and b̂ as follows:

1. Find the least t such that d = gcd(Y0, Y1, . . . Yt) and d
divides Yt+1.
2. For each i with 0 ≤ i ≤ t, find ui such that

t∑

i=0

uiYi = d.

3. Set â = 1
d

∑t
i=0 uiYi+1, and b̂ = X1 − âX0.

This stage will give Xi+1 = âXi + b̂ mod m for all
i ≥ 0.

• Stage II:
In this stage, we begin predicting Xi+1 and, if necessary,
modifying m. When a prediction Xi is made, the actual
value will be available to the inference algorithm. Initially,
we set i = 0 and m = ∞ and assume X0 and X1 are
available (we can reuse the numbers used in the previous
stage). Repeat the following steps:
1. Set i = i + 1 and predict

Xi+1 = âXi + b̂ mod m.

2. If Xi+1 is incorrect, m = gcd(m, âYi−1 − Yi).
Xi can be inferred in the limit. Please refer to [5] for a
detailed proof.

3) Analysis of Plumstead’s Algorithm: It is clear that every
step in both stages is polynomial-time computable in terms of
the size of m. Plumstead proves that in Stage I t is bounded
by t ≤ �log2 m�. The number of incorrect predictions made in
Stage II is bound by 2 + log2 m. Therefore, the algorithm is
optimal with a sample complexity O(log2 m) in the worst case.

4) Empirical Results of Plumstead’s Algorithm: We tested
the module, m, from 1 byte and double its size up to 32 bytes.
For m ≥ 2 bytes, we used the Miller-Rabin Test [8], a very effi-
cient randomized algorithm for primality tests, to select and de-
termine prime numbers with an error rate less than (1

2)�log2 m�.
Given m, we select 1000 sets of different parameters (a, b, m,
and X0). For each set of parameters, we generated the sequence
of pseudo-random numbers X1, X2, We ran the Plum-
stead’s algorithm to decide how many X i are needed to recover
the set of parameters (a, b, m, and X0).

ACCEPTED TO IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC 2006), ISTANBUL, TURKEY, 2006. 3

The results of our experiments are shown in Table I, in which
µ is the average number of samples needed to successfully in-
fer the pseudo-random number sequence while δ is the standard
deviation. Experimental results show that the Plumstead’s algo-
rithm is much more powerful than what the theoretical analysis
has suggested. We observe that the number of samples needed
in average is far fewer than that of the worst case. Also, Table I
contains the best case (min) and the worst case (max) for each
size. The values of δ in Table I indicate that the worse case
occurs rarely.

TABLE I
RESULTS OF PLUMSTEAD’S ALGORITHM

|m| Bytes µ δ min max
1 5.438 0.939 5 12
2 5.617 1.221 5 17
4 5.554 1.082 5 15
8 5.586 1.114 5 16
16 5.802 1.764 5 31
32 6.105 3.149 5 57

Based on the results illustrated in Table I, we can see that the
size of m does not prolong the inference process significantly.
Therefore, for a LCG, instead of increasing the size of m, we
need to hide the numbers generated. Also, from the results illus-
trated in Table I, we can see that if we can find a way to prevent
the adversary from retrieving five or more consecutive numbers
from the sequence, our cipher based on the LCG will be secure.
Our design follows the above principle by using the transmitted
information to protect the sequence of random numbers and by
using a re-keying mechanism.

C. Key Selection

The moduli we choose is a 16 byte prime. This could also fa-
cilitate the selection of suitable X0, a, b, and m that satisfy the
security requirements. By the Prime Number Theorem that the
number of positive prime less than n is asymptotic to n/ ln n,
the density of 16 byte primes is about 1

ln 2128 = 0.0127. There-
fore, on average we can successfully pick up a prime within
about 100 random selections. Then, we randomly assign num-
bers less than m to a, b, and X0 without further imposing any
restriction except for some trivial values such as 0 or 2k. In
our scheme, we only keep X0 as the secret shared between two
nodes. a, b, and m can be made open. They could be treated
as the WSN parameters. Careful selections of a, b, and m are
needed to achieve the maximum security using the LCG.

In this respect, we apply Hull and Dobell’s Theorem [23].
a) Hull and Dobell’s Theorem: : The linear congruential

sequence X0, X1, X2, . . . generated by

Xn+1 = aXn + b mod m (2)

has a period (the number of integers before the sequence re-
peats) of length m if the following conditions hold:

1) gcd(c, m) = 1: The only positive integer that (exactly)
divides both m and c is 1, i.e., c is relatively prime to m.

2) p|(a−1), for every prime p such that p|m: If p is a prime
number that divides m, then p divides (a − 1).

3) if 4|m, then 4|(a − 1): If 4 divides m, then 4 divides
(a − 1).

Since the results of Plumstead’s algorithm suggest that the
LCG can be broken almost in a constant number of observed
random numbers, our system is not more secure if we keep all
parameters a, b, m, and X0 in secret. In this respect, we make
them public except X0. Our goal is to hide all random numbers
from the adversary and setup a system that chosen-plaintext at-
tack can’t be conducted. The security of our system then does
not rely on the cryptographic strength of the LCG (which is
extremely weak). Instead, we rely on the LCG’s statistical ran-
domness, i.e., uniformality and period of repetition. Besides
the LCG, such statistical properties of any PRNG can be easily
tested. Based on Hull and Dobells Theorem, the LCG can reach
such maximal statistical randomness under the conditions listed
above, which are rather easy to achieve. When the period of the
LCG reaches its maximum value, the chance to guess a right
X0 is 1/m. Also, in practice, the chance that two nodes have
their sequence overlapped is slim when m is sufficiently large.
In our case, m has at least 128 bits.

Since X0 is the only shared secret, key pre-distribution is
relatively easier. For example, the Blom key predistribution
scheme [24] can be used to allow any pair of nodes to com-
pute one secret shared key (single key space) (It is worth not-
ing that, based on the Blom key predistribution scheme, Du.
et al. [11] proposed a pairwise key predistribution scheme us-
ing multiple key spaces). In this paper, we focus on the dis-
cussion of a LCG-based scheme. X0 can be any number in
Zm = 0, 1, . . . , m − 1. If the environment is detected more
hostile, our idea is still workable but a more complicate yet
more cryptographically secure PRNG should be used to replace
the LCG. Therefore, in this respect, the system is not more se-
cure if we keep a, b, and m the shared secret.

In order to speed up our modulus operation and reduce the
computing overhead for each sensor node, we make the follow-
ing requirement for the multiplier a and the modulus m:

263 < a < 264 and 2127 < m < 2128.

We will discuss the benefits we can obtain by setting this
extra requirement in Section V. It is worth noting that because
a, b, and m are open, these extra requirements will not cause
extra computation overhead to each sensor node.

D. Basic Hop by Hop Message Transmission

In this section, we use secure data aggregation [1] as an ex-
ample to illustrate the operations of our LCG-based security
protocol. Our proposed security mechanism is general enough
and is not limited to data aggregation only.

Notations:
A, B, C...: Sensor nodes
E(P, K): Encryption of plaintext message P using key K
P1|P2: Concatenation of message P1 and P2

MAC(K, P): Message Authentication Code (MAC) of mes-
sage P using key K

X0: Seed of the LCG

ACCEPTED TO IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC 2006), ISTANBUL, TURKEY, 2006. 4

a, b, m: Parameters of the LCG. Together with X0, they are
used to generate secret keys for the message transmission.

KAB: Shared secrets between node A and B. It is X0 of the
LCG.

DB E

H

A F

G

I

Base Station

J

C

E(PA, | MAC(PA, KAH), KAH)

E(PB | MAC(PB, KBH), KBH)

E(AggrH, | MAC(AggrH, KHJ), KHJ)

E(PB, | MAC(PB, KCH), KCH)
E(PB, | MAC(PB, KDH), KDH)

Fig. 1. Hop By Hop Security Protocol.

In Fig. 1, sensor nodes, such as nodes A, B, C, and D trans-
fer the readings to their immediate aggregator, node H . Each
sensor node appends a MAC to the plaintext message P and
uses their shared secret keys with H to encrypt the whole mes-
sage. After H receives the readings, it uses the corresponding
secret to decrypt and authenticate the received messages, com-
putes and sends out the aggregated result. This time, node H
appends a new MAC to the aggregated result and uses its shared
secrets with its immediate aggregator, node J , to encrypt the
whole message.

1) Message Encryption: The goal of encryption is to pre-
vent an attacker from recovering all the random numbers gener-
ated by the LCG. Encryption depends on the underlying block
cipher. It cannot involve too many complex operations. The
size of the block cipher should not be too large either. Oth-
erwise, given the usually small size of the data messages in
WSNs, the message padding will introduce a large overhead.

Our proposed block cipher is 16 bytes in size. For each block
cipher, one 16-byte random number X1 is needed. It is used
for the first stage of encryption (Stage I). The result of Stage
I (combine two 8-byte numbers into one 16-byte number) is
used for permutations and further encryption (Stage II). We
also introduce the noise permutation to further scramble results.
The general strategy is illustrated in Fig. 2:

a. Step 1 - Random Number Generation: We use the LCG to
generate the random number. Given a 16 byte block cipher, one
16 byte random number, X1, is needed.

b. Step 2 - Stage I: Suppose p1 and p2 are the plaintext mes-
sage to be encrypted using this block cipher. Each p i is 8 bytes.
We embed the pseudo-random number X1 into the plaintext
message in the following way.

For example, let Wireless sensor (16 bytes) be the mes-
sage to be encrypted. So p1 = Wireless, and p2 = sensor .
The first three characters of p1 are W = 87, i = 105, and
r = 114. The embedding operations are simply the addition
modulo 256. If

X1 = 10 5A FB 11 FC BB 00 11 22 33 44 55 66 77 88 99h

The values of the first three bytes are 10h = 16, 5Ah =
90, and FBh = 251. Therefore, the values of the first three
ciphertext characters encrypted are:

87 + 16 mod 256 = 103
105 + 90 mod 256 = 195
114 + 251 mod 256 = 109

X1

p1 p2

8 Byte

C1 C2 Permutation Function

plaintext

ciphertext

Step 1: Random Number X1 Generation

Step 2

Step 3

Step 4

LCG as a Noise GeneratorSeed X0

key: a, b, m

B
0

B
1

B
15

X1

Block Cipher
'
1C '

2C

Fig. 2. Message Encryption of a 16 byte Packet.

As illustrated in Fig. 2, C1, and C2 are the scrambled text
after X1 is embedded. Each Ci is also 8 bytes.

c. Step 3 - Permutation: X1 is broken into 16 1 byte random
numbers, denoted as B0, B1, . . . , B15 respectively. We intro-
duce a permutation function Π over Z16 = {0, 1, 2, . . . , 15}.
Let Π = π0π1π2 . . . π15 be constructed as follows:

I. π0 = B0 mod 16;
II. πi = (n mod 16), for i = 1 . . . 15 with n is the

smallest integer such that n ≥ Bi and πi � {π0, π1, . . . , πi−1}.
d. Step 4 - Stage II: After we obtain Π, we apply Π to C1C2

obtained in Step 2 in a standard manner, i.e., the i th byte of
Π(C1C2) is the πth

i byte of C1C2. Presented by 8 byte seg-
ments, let Π(C1C2) = C′

1C
′
2, which are our final encrypted

message.
Decryption is straightforward. The receiver node could gen-

erate the same X1 that the sender generates. Using X1, the
receiver can obtain p1 and p2 following the backward of Fig. 2.

2) Security Analysis: This section analyzes the security pro-
tocol in terms of Confidentiality, Authenticity and Integrity.

a. Confidentiality
According to the construction of the permutation function in

Step 3, the mapping from the random bytes B i to Π is many-
to-one. Under the chosen-plaintext attack, the adversary may
successfully obtain a permutation function. However, one per-
mutation function corresponds to

25616

16!
≈ 2128

244
≈ 284

many values for one 16 bytes pseudo-random number. That
is, the same permutation function may be constructed based on
284 many different pseudo-random numbers (i.e., B i). There-
fore, it is not feasible to exhaustively search the possible values
of the 16 byte pseudo-random numbers.

We only use a half of each byte (16 = 24) in Bi to construct
our permutation function. It follows that the revealing of the
permutation function cannot recover the value of B i. Even from
the cryptographic point of view, we consider revealing some

ACCEPTED TO IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC 2006), ISTANBUL, TURKEY, 2006. 5

random bits (a half of bits in Bi) a deficiency in a cryptosystem,
we have the following analysis. The probability that the values
in Bi do not introduce collisions is very low. More precisely,
according to the birthday [20] attack, when n = 16 and

k ≈
√

2n ln 0.5−1 − 1 ≈ 3.7 (3)

The probability of Bk mod 16 ∈ {π0, π1, . . . , πk−1} (the
probability of collision) is at least 0.5. Based on Equation 3,
starting from π3, the value of πi is not likely to be the value
of Bi mod 16. As i becomes larger, the chance of collisions
becomes larger and the chance that the attacker obtains the right
value for Bi becomes smaller.

b. Authenticity and Integrity
We use a Cipher Block Chaining (CBC) MAC to provide au-

thentication and integrity. It has proven that the CBC-MAC is
secure if the underlying block cipher is secure [15].

In [12], a choice of a 4 byte MAC is used. This is because in
certain applications, it is difficult for the attacker to brute force
the key in an off-line manner. Also, given a 19.2kbs channel in
WSNs, it is not realistic to send enough data packets to test the
MAC. In our design we also use a 4 byte MAC in our protocol.

The CBC-MAC scheme is illustrated in Fig. 3. Here
each pi is 8 bytes and X1 is 16 bytes. The output of the
previous block cipher C ′

1C
′
2 (16 bytes) is used as the input

for the next block cipher (i.e., X1). This process is stan-
dard. The final output C ′

2i+1C
′
2i+2 is 16 bytes. We use

(First 4 Bytes of C′
2i+1)

⊕
(Second 4 Bytes of C′

2i+1)⊕
(First 4 Bytes of C′

2i+2)
⊕

(Second 4 Bytes of C′
2i+2)

to convert it to a 4-byte MAC,

 X1 Our Block
Cipher

p1, p2

Our Block
Cipherp3, p4

p2i+1, p2i+2

Our Block
Cipher

CBC_MAC =

'
1C '

2C

'
3C '

4C

First 4 Bytes of
Second 4 Bytes of
First 4 Bytes of
Second 4 Bytes of

'
12 +iC

'
22 +iC

'
12 +iC

'
22 +iC

Fig. 3. Integrity and Authenticity.

The final format of our transmitted message is
E(P |MAC(K, P), K), instead of E(P, K)|MAC(K, P).
The encryption computation in E(P, K)|MAC(K, P) in-
volves less operations because its encryption only operates
on P , instead of P |MAC(K, P). However, the MAC code
is short in wireless sensor networks. What’s more, the MAC
function is usually weaker than that of traditional wired net-
works. The encryption of E(P |MAC(K, P), K) can provide
one layer of protection for the MAC.

One approach to achieve semantic security in our context is
an efficient rekeying mechanism. In Fig. 2, C ′

1 and C ′
2 can be

assigned as the new seed (X0). Therefore, new keys will be
generated for the encryption of the next data message at the

sender and receiver sides. Note that no message overhead is in-
volved in this process. In doing so, the same plaintext message
can be encrypted using different keys, and in this way semantic
security can be achieved.

If an environment has a high rate of message lost and col-
lision, we can reduce the frequency of rekeying operations to
avoid the potential huge number of key synchronization oper-
ations. To prevent an adversary from keeping sending bogus
messages to trigger the nodes into performing key synchroniza-
tion, the nodes can send the keys with each encrypted messages.

3) Discussion: The permutation of our cipher in Steps 3
and 4 can guarantee that even if our cipher is applied to a low
entropy environment, the security of our cipher will not be sig-
nificantly compromised. Moreover, for the known-plaintext at-
tack, the permutation function takes on in Step 3, in which the
random numbers generated by the LCG play an extra role in
altering the original order of the content of the message.

For the chosen-plaintext attack, as we mentioned earlier, en-
crypting two packets and comparing their ciphertexts may re-
veal about 8 to 12 random bits in a 128-bit random number.
This does not provide sufficient information for the adversary
to conduct an effective attack in the context of WSNs.

The size of our block cipher is 16 bytes. So for a data packet
that is less than 16 bytes, we need to pad it. For a message that
is larger than 16 bytes, one approach called ciphertext steal-
ing [20] can be used to ensure that the ciphertext has the same
length as the underlying plaintext. Note that it is not desirable
to send short messages considering the fixed overhead of send-
ing a message (turning on the radio, acquiring the channel, and
sending the start symbol) [12]. Also, for data packets that are
larger than 16 bytes, we need more than one block cipher to en-
crypt the whole message. The same X1 (X1 used for the first
block cipher) is used for the rest of the block ciphers in order to
avoid the expensive operations of multiplication and modulo.

V. PERFORMANCE ANALYSIS

The cryptographic algorithm and the efficiency of the soft-
ware implementation determine the number of clocks necessary
to perform the security function [22]. Therefore, the process-
ing overhead in terms of the Number of Basic Operations can
reflect the implementation efficiency and the energy consump-
tion of the cryptographic computation. We calculate the Num-
ber of Basic Operations of our cipher and compare it with RC5.
We consider Addition, XOR, Shift (1 bit), Fetch (fetch a value
from the main memory to a register), and Store (store a value in
a register to the main memory) as our basic operations. In par-
ticular, we choose RC5-32/12/X, (i.e., 32 bits words, 12 rounds,
and X as the key length) based on the algorithm in [14]. We do
not consider the cost of computing the S-Table of RC5 in our
analysis.

We consider the cost of performing one general n-bits multi-
plication as n

2 additions and n
2 shifts in average on n-bit regis-

ters. Since a division can be reduced to a multiplication, we use
the same estimation for the division. Also, the same estimation
is made to the general modulo.

We have some special cases: a multiplication by 2 is a left-
shift operation; the operation of (n mod 32) is considered
one XOR operation. “shift B bits (≪ B)” means “shift (B

ACCEPTED TO IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC 2006), ISTANBUL, TURKEY, 2006. 6

mod 32) bits”. . Also, we use 16 as the average value of (B
mod 32). For RC5, we assume the values of A and B, the two
words to be encrypted, remain in the registers during the course
of computation. Finally, we consider that n basic operations
on a 32-bit-processor are equivalent to 8n basic operations on a
8-bit processor.

A. Results

Combining the number of basic operations in LCG-based
cipher, the number of basic operations for generation of one
128-bit LCG pseudo-random number, and the number of basic
operations in RC5, we obtain Fig. 4, which depicts the com-
parison of the number of basic operations to encrypt a packet
at different sizes. Fig. 4 clearly demonstrates the advantage
of our proposed cipher. Considering an 8-bit processor, for a
16 byte packet, our encryption mechanism needs roughly 3/4
amount of basic operations of RC5. What’s more, our encryp-
tion mechanism takes into consideration the generation of ran-
dom numbers, which may provide many advantages. For a 32
byte packet, the number of basic operations of RC5 is doubles
that of 16 byte packets. However, for a 32 byte packet, our en-
cryption mechanism only slightly increases the number of op-
erations. This is because the second 16 bytes do not need the
generation of the random number, which significantly reduces
the overhead. Similar observations exist for 64 byte and larger
packets.

Fig. 4. Numbers of Basic Operations in RC5-32/12/X and LCG-based Cipher.

VI. RELATED WORK

Many research efforts have been devoted to security is
WSNs. Perrig at al. [10] provides a suite of security build-
ing blocks that are optimized for resource constrained WSNs -
SNEP and µTESLA. Hu et. al [19] studied the secure aggre-
gation problem if one node is compromised. Park et al. [16]
proposed LiSP - an efficient lightweight protocol that makes a
trade-off between security and resource consumption. Karlof
et al. [12] presented the fully-implemented link layer security
architecture for WSNs. There is also much work devoted to the
key distribution and management in WSNs [10] [11].

That all sequences generated by the LCG are predictable
was first argued by Knuth [3]. Boyar [5] gave a rather com-
plete treatment on the predictability of some of the widely used
LCGs. Krawczyk [6] gave an inference algorithm that can pre-
dict any sequence generated by the LCG in its most general
form, which settled a final theoretical viewpoint to the pre-
dictability of LCG. In [7], Ritter strongly warned that any at-
tempt to use LCGs for cryptographical purposes is dangerous
unless the sequence can be isolated from another generator.
Our work is motivated by this fact and uses the transmitted in-
formation to protect the sequence of random numbers.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, based on a LCG, we propose a lightweight
block cipher and apply it to WSNs. The security of our pro-
posed cipher is achieved by adding random noise and random
permutations to the original data messages. Security analysis
demonstrates that our proposed cipher is secure and suitable for
WSNs. At the same time, our proposed cipher is much more
efficient in terms of the number of basic operations.

We plan to implement our proposed mechanisms on MICA2
sensor nodes and compare the performance of our block cipher
with other popular lightweight ciphers.

REFERENCES

[1] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “Wireless
sensor networks: a survey”, Computer Networks, 38(4): 393-422, 2002.

[2] K. Entacher, “A Collection of Selected Pseudorandom Number Generators
with Linear Structures,” TR 97-1, University of Vienna, Austria, 1997.

[3] D.E. Knuth, “Deciphering a Linear Congruential Encryption,” IEEE Trans-
actions on Information Theory, vol. 31, no. 1, pp. 49-52, January 1985.

[4] J. Boyar, “Inferring Sequences Produced by Pseudo-Random Number Gen-
erators,” Journal of the ACM, vol. 36, num. 1, pp. 129-141, 1989.

[5] J.P. Plumstead (Boyar), “Inferring a Sequence Generated by a Linear Con-
gruence,” Proceedings of the 23rd Annual IEEE Symposium on the Foun-
dations of Computer Science, pp. 153-159, 1982.

[6] H. Krawczyk, “How to Predict Congruential Generators,” Journal of Algo-
rithms, vol. 13, no. 4, pp. 527-545, 1992.

[7] T. Ritter, “The Efficient Generation of Cryptographic Confusion Se-
quences,” Cryptologia, vol. 15, no. 2, pp. 81-139, 1991.

[8] D. Stinson, “Cryptography: Theory and Practice”, Chapman & Hall, 2nd
Edition, 2002.

[9] S. Zhu, S. Setia, and S. Jajodia, “LEAP: Efficient Security Mechanisms for
Large-Scale Distributed Sensor Networks”, ACM CCS, Washington DC,
pp. 62-72, 2004.

[10] A. Perrig, R. Szewczyk, V. Wen, D. Culler, and J. D. Tygar, “SPINS: Se-
curity Protocols for Sensor Networks”, ACM Wireless Networks, 8(5):521-
534, Sept. 2002.

[11] W. Du, J. Deng, Y. Han, and P. Varshney, “A Pairwise Key Pre-distribution
Scheme for Wireless Sensor Networks”, ACM CCS, Washington DC, pp.
42-51, 2004.

[12] C. Karlof, N. Sastry, and D. Wagner, “TinySec: a link layer security archi-
tecture for wireless sensor networks”, Proceedings of the 2nd international
conference on Embedded networked sensor systems, Baltimore, MD, USA,
pp. 162 - 175.

[13] D. Wagner, “Resilient aggregation in sensor networks”, Proceedings of
the 2nd ACM workshop on Security of ad hoc and sensor networks, Wash-
ington DC, USA, 2004, pp. 78 - 87.

[14] R. Rivest, “The RC5 encryption algorithm”, Proc. 1st Workshop on Fast
Software Encryption, 1995, pp. 86 - 96.

[15] M. Bellare, J. Kilian, and P. Rogaway, “The Security of the Cipher Block
Chaining Message Authentication Code”, Journal of Computer and System
Sciences, vol. 61, no. 3, December 2000, pp. 363-399.

[16] T. Park and K.G. Shin, “LiSP: A lightweight security protocol for wireless
sensor networks”, ACM Transactions on Embedded Computing Systems
(TECS), Volume 3, Issue 3, pp. 634 - 660, August 2004.

[17] R. L. Rivest, A. Shamir, and L. M. Adleman, “A method for obtaining
digital signatures and public-key cryptosystems,” Communications of the
ACM, 21(2):120-126, 1978.

[18] Skipjack and KEA algorithm specifications.
http://csrc.nist.gov/encryption/skipjack/skipjack.pdf, NIST, 1998.

[19] L. Hu and D. Evans, “Secure Aggregation for Wireless Networks”, Work-
shop on Security and Assurance in Ad hoc Networks, Orlando, FL, Janu-
ary, 2003.

[20] B. Schneier, “Applied Cryptography: Protocols, Algorithms, and Source
Code in C”, 2nd Edition, John Wiley & Sons, 1996.

[21] S. Goldwasser, and S. Micali, “Probabilistic encryption”, Journal of Com-
puter Security, vol. 28, pp. 270-299, 1984.

[22] D. Carman, P. Kruus, and B. Matt, “Constraints and approaches for dis-
tributed sensor network security”, NAI Labs Tech. Report No. 00010,
2000.

[23] D.E. Knuth, “The Art of Computer Programming”, Vol 2: Seminumerical
Algorithms, Addison-Wesley, 1969.

[24] R. Blom, “An Optimal Class of Symmetric Key Generation Schemes”,
Advance in Cryptography EUROCRYPT, 1985, Lecture Notes in Computer
Science, Vol, 209, pp. 335-338, Springer-Verlag, 1985.

