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Abstract. In [15] we defined a class of functions called Type-2 Time
Bounds (henceforth T2TB) for clocking the Oracle Turing Machine
(henceforth OTM) in order to capture the long missing notion of com-
plexity classes at type-2. In the present paper we adopt the same notion
and further advance this apt type-2 complexity theory along the line of
the classical one. Albeit the OTM is mostly accepted as a natural com-
puting device for type-2 computation, the complexity theorems based
on the OTM are highly sensitive to the convention of the machine. In
particular, the cost model in dealing with the oracle answers turns out
to be a crucial factor in the theory. Almost all existent literatures on
the machine characterization for type-2 computation are based on a cost
model known as answer-length cost model. In this paper we present a rea-
sonable alternative called unit cost model, and examine how this model
shapes the outlook of the type-2 complexity theory. We prove two theo-
rems that are opposite to the classical union theorem and gap theorem
under our unit cost model (the results are also opposite to ones under
the answer-length cost model [13, 15]). Without the rather bizarre gap
phenomena, our formulation for type-2 computation may be considered
as a better model that fits our intuitive notion of computation. We also
investigate some properties of T2TB including a very useful theorem
stating that there is an effective operator to convert any β ∈ T2TB into
an equivalent one that is locking-detectable. With this theorem, we can
simplify our proofs without loss of generality by assuming any concerned
β ∈ T2TB locking detectable.

Outline: We organize the present paper as follows. Section 1 contains a very
brief introduction to the problem and necessary notations used in this paper.
Sections 2 and 3 include definitions of our type-2 time bounds and the clocking
scheme. We put the main results of our type-2 complexity theory in Section 4. In
Section 5 we discuss the properties of type-2 time bounds. Section 6 concludes our
investigation with prospects of future study. We put all proofs in the appendixes.

1 Introduction

Let N denote the set of natural numbers. Consider an acceptable programming
system, 〈ϕi〉i∈N, and let 〈Φi〉i∈N be a complexity measure associated to 〈ϕi〉i∈N.



Simply put, one may consider ϕi as the function computed by the ith Turing
machine. A formal definition for an acceptable programming system can be found
in [21, 20]. For a complexity measure, one may consider Φi(x) as the amount of
resource needed to compute ϕi on x. We use ϕi(x) ↓= y to denote that the
computation of ϕi on x is converged and its value is y. Similarly, Φi(x) ↓= m
means the cost of computing ϕi on x is converged to m. Two landmark papers,
Hartmanis and Stearns [8] and Blum [1], initiated an important study now known
as abstract complexity theory in theoretical computer science. In [8] Hartmanis
and Stearns gave a precise definition for complexity classes as follows:

C(t) =
{
ϕi

∣∣ i ∈ N, Φi ≤∗ t
}

,

where Φi ≤∗ t means that the relation, Φi(x) ≤ t(x), should hold on all but
finitely many values of x. Within two years, Blum proposed two axioms as the
basic requirements for any reasonable dynamic complexity measures to meet.
The two requirements are straightforward: for any i, x,m ∈ N, we require

1. ϕi(x) ↓ if and only if Φi(x) ↓, and
2. Φi(x) = m is effectively decidable.

The two axioms had successfully lifted the study of complexity theory to an
abstract level with rich results that are independent from any specific machine
models.

It is obvious that the complexity theory should be extended into type-2 (a.k.a.
second-ordered) computation. This inquiry can be traced back to Constable’s
1973 paper [6] in which he asked what should a type-2 complexity theory look
like? However, only a few scattered works had been done in the past three
decades due to the difficulty of having a generally accepted abstraction for type-
2 computation. Traditionally, we may use the OTM as our standard formalism
for type-2 computation together with Blum’s two axioms as the framework of
the theory. But, these are not enough to materialize a robust complexity theory
at type-2 due to many other problems. Our first question is that, what is a
reasonable notion of asymptotical behaviors of type-2 computation? Such notion
is needed in order to simplify our analysis without loss of generality; e.g., the
use of “≤∗” in the definition of Hartmanis and Stearns’s classes is such a notion.
The second question is, how do we clock an OTM with a resource bound so we
can shutdown the machine for good reasons? Also, the property of the resource
bound should properly reflect the complexity property of the machine being
clocked. Moreover, the clocking scheme should satisfy Blum’s two axioms in a
natural way, i.e., we do not want to impose too many nonsensical restrictions
on the resource bounds just to satisfy the two axioms. All of these do not come
easy, and that explains why the body of type-2 complexity theory is still so thin
after all these years when the heyday of abstract complexity theory is long past.

Recently, we introduced a notion of type-2 asymptotical behaviors in [14] to
catch the idea of its type-1 counterpart – for all but finitely many. Using the
notion of type-2 asymptotical behaviors we answer the first question stated in
the previous paragraph and lift the complexity classes into type-2. To our second
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question, in [15] we proposed a class of type-2 time bounds and a clocking scheme
as a partial answer. In the present paper, we further study the properties of our
type-2 time bounds and point out that the type-2 complexity theory is highly
sensitive to the actual cost model used in the clocking scheme. We believe that
our investigation initiates a sound framework for theorists to further speculate a
more complete machine-independent complexity theory for type-2 computation.

Notations: We first introduce some necessary notations. By convention, the nat-
ural numbers are taken as type-0 objects and type-1 objects are functions over
natural numbers. Type-2 objects are functionals that take as inputs and produce
as outputs type-1 objects. Let type-0 ⊂ type-1 ⊂ type-2. We are only interested
in total functions of type N → N when they are taken as inputs of type-2 func-
tionals. For convenience, we use T to denote the set of total functions and P
to denote the set of partial functions. Also, we use F to denote the set of finite
functions, which means σ ∈ F if and only if dom(σ) ⊂ N and card(σ) ∈ N. We
fix a canonical indexing for F , and hence we are free to treat any function in
F as a number when it is taken as the input of a type-1 function. Let 〈·, ·〉 be
the standard pairing function defined in [20]. Thus, 〈σ, x〉 ∈ N for every σ ∈ F
and x ∈ N. Unless stated otherwise, we let a, b, x, y, z range over N, f, g, h range
over T , and F, G,H range over type-2 functionals.

Here we present some typical examples of type-2 functionals: 1. F (f, x) =
f(x); 2. G(f, x) = f(f(x)); 3. H(f, x) =

∑x
i=0 f(i); 4. Γ (f) = f ◦ f, where ◦ is

function composition. F, G, and H are type-2 functionals of type T ×N → N,
while Γ is of type T → T . With λ-abstraction, we have Γ (f) = λxG(f, x). Since
some complexity theorems at type-2 can be easily proven by the same tricks
used in the original proofs, we therefore keep a type-0 input in order to take
this advantage. In some cases, however, the type-0 input seems redundant if the
type-1 input is the main character in the proof. We also note that T ∼= T ×N
via, for example, f 7→ (f ′, f(0)), where f ′(x) = f(x + 1). Thus, we do not lose
generality when we restrict type-2 functionals to our standard type T ×N ⇀ N.
With this restriction, we can take the OTM as our standard formal computing
device as follows: The numerical input is prepared from the beginning of the
tape, and the functional input is prepared as a function oracle attached to the
machine. During the course of computation, when the OTM needs a value from
the function, the OTM shall query the oracle in a standard manner.1 Moreover,
we fix a programming system 〈ϕ̂〉i∈N associated with a complexity measure
〈Φ̂〉i∈N for our OTM’s. Conventionally, we take the number of steps an OTM
performed as our time complexity measure. Once a resource bound and a proper

1 An OTM has two extra tapes: one query tape and one answer tape. The OTM has
to prepare the query in the query tape, and then transits to a special state called
query state in which the oracle will place the answer to the query in the answer tape
in one step, no matter how big the answer might be. Note that the steps needed
for the OTM to write the query and read the answer returned from the oracle are
counted as a part of the computational cost of the OTM.
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clocking scheme are given, we can further restrict our functionals of interest to
be total.

2 Type-2 Complexity Classes and Time Bounds

In [23] Seth followed Hartmanis and Stearns’s notion [8] and proposed the fol-
lowing two definitions for type-2 complexity classes. Let |n| be the length of the
presentation of n ∈ N.

Definition 1 (Seth [23]). Let t : N → N be recursive. Let DTIME(t) denote
the set of type-2 functionals such that, for every functional F ∈ DTIME(t), F is
total and there is an OTM M̂e that computes F and, on every (f, x) ∈ T ×N,
M̂e halts within t(m) steps, where m = |max({x} ∪ Q)| and Q is the set of all
answers returned from the oracle during the course of the computation.

Definition 2 (Seth [23]). Let H : T ×N → N be computable. Let DTIME(H)
denote the set of type-2 functionals such that, for every functional F ∈ DTIME(H),
F is total and there is an OTM M̂e that computes F and, on every (f, x) ∈ T ×N,
M̂e halts within H(f, x) steps.

Clearly, the key idea behind the two definitions is directly lifted from Hart-
manis and Stearns’s [8]. In fact, the same idea can also be found in other works
such as [9, 10, 22, 17] along the line of machine characterizations for type-2 com-
plexity classes. However, the two introduce new problems that do not exist in
type-1 computation. In Definition 1, Q is not computable in general, and hence
not every complexity class has a recursive presentation. Alternatively, we can
update the bound dynamically upon each oracle query made during the course
of the computation, e.g., Cook’s POTM [7] is an OTM bounded by a polynomial
in this manner. However, this introduces another problem, i.e., a clocked OTM
may not be total as Cook himself has noted; even if the bound t is as small
as in O(n2) [13]. For Definition 2, we can find a direct implementation from
Kapron and Cook’s works on type-2 Basic Feasible Functionals (BFF), where
the bound H in the definition is a so-called second-ordered polynomial [9, 10].
With a proper notation of type-2 almost everywhere relation such as ≤∗

2 in [14], a
more workable type-2 complexity class defined by a computable H : T ×N → N
is given as follows:

DTIME(H) =
{

F
∣∣ ∃e

[
ϕ̂e = F and Φ̂e ≤∗

2 H
]}

. (1)

In type-1, the complexity measure is computed based on the size of the input,
i.e., the cost of computing ϕe(x) is Φe(|x|), where |x| denotes the length of the
bit string of x’s binary representation. We emphasize that the value of |x| is
much smaller than x itself. For type-2 computation, Kapron and Cook [9, 10]
introduced the length for type-1 function f as follows:

|f | = λa.max(
{
y

∣∣ y = |f(x)|, |x| ≤ a
}
).
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These all seem well for BFF’s, but in general, however, we do not think using a
type-2 functional as a resource bounds together with a length function is proper
for two reasons. First of all, as a matter of fact, only a finite part of the type-1
input contributes to the computation, it seems unnecessary to let the resource
bound “know” the entire type-1 input. In other words, the resource bound should
not depend on information that is irrelevant to the computation. Secondly, the
length function is difficult to compute, i.e., computing (f, x) 7→ |f |(|x|) is not
basic feasible. Consequently, a clocked OTM will become inefficient if the cost of
computing the bound is considered. To avoid these problems, we give a class of
functions called Type-2 Time Bounds as explicit time bounds for clocking OTMs
[15]. Consider the following definitions, where β : F ×N → N is a function that
takes as inputs a finite function and a numerical number and produce a number
as output:

Definition 3 (Type-2 Time Bounds). Let β : F ×N → N. We say that:

1. β is nontrivial, if for every (σ, a) ∈ F ×N, β(σ, a) ≥ |a|+ 1;
2. β is bounded, if for every (f, x) ∈ T × N, σ ∈ F , and σ ⊂ f, we have

β(σ, x) ≤ limτ→f β(τ, x);
3. β is convergent, if for every (f, a) ∈ T ×N, there exists σ ∈ F with σ ⊂ f

such that, for all τ with σ ⊆ τ , we have β(σ, a) = β(τ, a);
4. β is F-monotone, if for every a ∈ N and σ, τ ∈ F with σ ⊆ τ , we have

β(σ, a) ≤ β(τ, a).
5. β is a type-2 time bound if β is computable, nontrivial, bounded, and con-

vergent;
6. β is a strong type-2 time bound if β is an F-monotone type-2 time bound.

We use T2TB to denote the set of all type-2 time bounds. In [15] we used
WB to denote the set of type-2 time bounds and SB to denote the set of strong
type-2 time bounds. Clearly, SB ⊂ WB and SB 6= WB. Consider the following
example: Define β : F ×N → N by

β(σ, x) =
∑

0≤i≤x ∧ i∈dom(σ)

σ(i) + |x|+ 1. (2)

One can verify that β in (2) is computable, nontrivial, bounded, and convergent,
and hence β ∈ T2TB. Also, one can verify that β is strong.

Since T2TB is designed for clocking OTM’s, we formulate the properties
listed in Definition 3 to reflect our intuition about what should be a resource
bound in computation. Nontriviality assures that the resource is at least enough
for every OTM to scan the entire type-0 input at the beginning of its compu-
tation. Boundedness requires the value of β to be bounded by its value in the
limit. In other words, the maximal value of β exists in the limit. Finally, if β
is convergent, then the value of β must converge to a number and hence every
OTM clocked with β must terminate on any input sooner or later. It is clear that
a strong β must be bounded, since a strong β never shrinks during the course
of the computation. Our original proposal require a type-2 time bound to be
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F-monotone instead of just bounded. But we later found that most interesting
theorems sustain with this weaker version of T2TB.

By a standard diagonalization, one can prove that T2TB is not recursively
enumerable. This indeed is an uneasy fact, since we therefore can’t enumerate
T2TB when needed in some proofs. Being able to effectively decide whether a
β has converged seems to be a powerful assumption. It is easy to prove that to
decide whether or not a β has converged can be reduced to the halting problem,
and this seems to suggest that we cannot make this strong assumption in our
theorems. However, we have a very positive theorem stating that making such
a strong assumption in our proofs does not lose the generality of our theorems.
We first formalize some terminologies in the following definition.

Definition 4 (Locking Detectors). Let β ∈ T2TB. Suppose ` : F × N →
{0, 1} is computable with the following three properties:

1. ` is F-monotone;
2. ∀(σ, x) ∈ F × N

[
`(σ, x) = 1 =⇒ β(σ, x) ↓], where β(σ, x) ↓ means ∀τ ⊇

σ[β(σ, a) = β(τ, a)].
3. ∀(f, x) ∈ T ×N [limσ→f `(σ, x) = 1] .

Then, we say that ` is a locking detector of β.

If β ∈ T2TB has a locking detector, we say that β is locking detectable. One
can verify that the β defined in (2) is locking detectable. Let ` be such a locking
detector of β. We say that (σ, x) ∈ F×N is a locking fragment of β if `(σ, x) = 1.
Since the converse of property 2 in Definition 4 above needs not to be true, it
follows that a minimal locking fragment of ` may not be a minimal one of β. More
properties of T2TB will be shown in Section 5, where we will argue that not
every type-2 time bound is locking detectable, but as we mentioned earlier, we
will show that the theorems proven with the assumption of locking detectability
are still valid in the general case.

3 A Clocking Scheme and Two Cost Models

Here we present an OTM clocking scheme using our T2TB. This scheme is
implied in the works of Kapron and Cook’s [9, 10], Seth’s [23], and Royer’s [22].

Definition 5 (Clocked OTM). Let β ∈ T2TB and M̂e be an OTM with
index e. We say that M̂e is clocked by β if and only if M̂e is simulated by the
procedure shown in Figure 1. Such a clocked OTM is denoted by M̂e,β computing
a functional denoted by ϕ̂e,β.

Consider the procedure in Figure 1. The budget provided by β is computed
based on the answers to the oracle queries during the course of the simulation of
M̂e on (f, x). If the simulation has overrun the budget, then the simulation will
be terminated at the line marked (⇑). In this case we say that M̂e is clipped down
by β on (f, a). We denote this situation by ϕ̂e,β(f, a) ⇑. On the other hand, if the
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Program for Clocked OTM cMe,β :
input (f, x) ∈ T ×N;
var σ ∈ F ; q, y, expense, budget ∈ N; /* variable declaration */
σ ←− ∅; expense ←− 0; budget ←− β(σ, x); /* initialization */

Simulate cMe on (f, x) step by step and upon each step completed do:
expense ←− expense + 1;
if (expense > budget) /* check budge */

then output ⊥ and stop; /* ⊥ is the bottom symbol. (⇑) */

if (cMe halts with the output y)
then output y and stop; /* simulation completed. (⇓) */

if (the step just simulated completes an oracle query)
then do

q ←− current query;
σ ←− σ ∪ {(q, f(q))}; /* update query-answer set */
budget ←− β(σ, x); /* update budget */

end-do;
Resume the simulation;

End program

Fig. 1. A Clocking Scheme for OTM’s

simulation reaches the line marked (⇓), which means that the simulation of M̂e on
(f, a) is successfully completed, then we denote this situation by ϕ̂e,β(f, a) ⇓, or
we say ϕ̂e,β(f, a) converges to value ϕ̂e(f, a). Since β is convergent, it follows that
the simulation of M̂e on (f, a) will either complete or eventually be clipped down
by the clock. Therefore, for any β ∈ T2TB, ϕ̂e,β is a total computable functional
of the type T ×N → N. This remove POTM’s nonterminating situation.

Arbitrarily Complex ϕ̂-program Here we show an easy application in terms of
classical recursion theory. Although the locking fragment of β in general is unde-
cidable (see Section 5), we need not to know the value of β in the limit in order
to construct an arbitrarily complex ϕ̂-program for any given computable type-2
functional. This is similar to the ordinary type-1 computation.

Theorem 1. Given any computable F : T ×N → N and β ∈ T2TB, there is a
ϕ̂-program e for F such that ϕ̂e 6= ϕ̂e,β.

Proof: Let F : T ×N → N be computable. With some proper versions of type-2
S-m-n and recursion theorems such as ones proposed in [11], we can construct a
ϕ̂-program e such that, for every (f, x) ∈ T ×N,

ϕ̂e(f, x) =
{

F (f, x) if ϕ̂e,β(f, x) ⇑,
ϕ̂e(f, x) + 1 otherwise.

It is clear that that ϕ̂e = F because the otherwise-case will never occur. ¤
A slightly more involved theorem is the type-2 version of Rabin Theorem

[19], which states that, given any β ∈ T2TB there is a 0-1 valued computable
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functional F : T ×N → N that cannot be computed by any ϕ̂e,β . We prove a ver-
sions in [14] where the bound function is simply a computable type-2 functional.
The proof is perfectly valid under the present clocking scheme with T2TB.

Unfortunately, the properties of β ∈ T2TB and our intuitive clocking scheme
are not sufficient to standardize a framework for type-2 complexity theory. The
way an OTM handles the answers returned from the oracle does matter. We
have the following two conventions under our clocking scheme.

Definition 6. (Two Cost Models for OTM’s)

1. Answer-Length Cost Model: Under this model, whenever the oracle returns
an answer to the oracle query, the machine is required to read every bit of
the answer.

2. Unit Cost Model: Under this model, the machine needs not to read any bit
of the oracle answer unless the machine decides to do so.

In [9, 10, 22, 23], the answer-length cost model is assumed for the underlying
machine. In [15] the outline of a type-2 complexity theory is also based on the
answer-length cost model, in which we mention the unit cost model as a possible
alternative without further elaboration. Nevertheless, we do not think the unit
cost model is an unusual convention. For example, a computation may need
to know if the answer to the query is odd or even. In this case, only the first
bit of the answer needs to be scanned. However, the controversial part is that,
under the unit cost model, the computation can aggressively gain some budget
by just querying the oracle without reading the answers. This adds difficulty in
working with the the unit cost model and the complexity theory tends to be
much flatter than the theory under the answer-length model. For example, there
exist certain versions of Union Theorems [15] and Gap Theorems [13] under the
answer-length cost model, but they fail to hold under the unit cost model. In
the next section we will discuss some interesting complexity phenomena under
the unit cost model.

4 Complexity Theory under The Unit Cost Model

We differentiate the unit cost model from the answer-length cost model by using
a superscript u as follows: M̂u

e , ϕ̂u
e , Φ̂u

e , M̂u
e,β , ϕ̂u

e,β , and Φ̂u
e,β . For example, M̂u

e is
the unit cost model OTM with index e, and ϕ̂u

e,β denotes the functional computed
by M̂u

e with clock β. Since the two models do not differ in computability, we
have ϕ̂e = ϕ̂u

e for every e. On the other hand, Φ̂e 6= Φ̂u
e , and hence ϕ̂e,β 6= ϕ̂u

e,β in
general. Unless stated otherwise, if the superscript is omitted from the statement
of some theorem, we mean that the theorem holds under both cost models. We
adapt the notion of type-2 complexity classes proposed in [13–15] but alter the
cost model to the unit cost model. The exception set, Eu

e,β is defined as follows:
For every β ∈ T2TB and e ∈ N, let

Eu
e,β =

{
(f, x) ∈ T ×N

∣∣ ϕ̂u
e,β(f, x) ⇑}

.
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We also adapt the topology introduced in [14]. That is, given a fixed continuous
functional F : T ×N → N, T(F ) is the topology defined by taking the set of
total extensions of every minimum locking fragment of F as a basic open set.
By locking fragment of F , we mean (σ, x) ∈ F ×N such that, for any f, g ∈ T
with σ ⊂ f and σ ⊂ g, we have F (f, x) = F (g, x). Since each functional ϕ̂e is
continuous, the topology T(ϕ̂e) is well defined. It’s also clear that such T(F ) is
induced from the Baire topology. Note that, we require σ to be the minimum
locking fragment, otherwise T(F ) will inflate to the Baire topology in which
every open set can be obtained by taking the union of the total extensions of
some locking segments of F . We define our type-2 complexity classes as follows.

Definition 7 (The Type-2 Time Bound Class). Let β ∈ T2TB. Define the
set of computable type-2 functionals Cu(β) as

Cu(β) =
{
ϕ̂e : T ×N → N

∣∣ e ∈ N and Eu
e,β is compact in T(ϕ̂e)

}
.

4.1 Inclusion property

In [14] we pointed out that it doesn’t seem likely to have a reasonable notion
for type-2 asymptotic relation, ≤∗

2, that is transitive due to the topological con-
straints. Thus, if a type-2 complexity class is defined by some type-2 functional
in the classical manner such as (1), a bigger resource bound does not always
promise a bigger complexity class. Our type-2 time bounds and the clocking
scheme can easily fix this problem. This adds another reason why we do not
think using type-2 functionals as resource bounds for type-2 computation is ap-
propriate. Note that the theorem below holds under both cost models, and thus
we drop the superscript, u.

Theorem 2. For every β1, β2 ∈ T2TB, [β1 ≤ β2] =⇒ [C(β1) ⊆ C(β2)].

Proof: Suppose ϕ̂e ∈ C(β1). According to the clocking scheme, we have that:
if β1 ≤ β2 then for any e ∈ N, Ee,β2 ⊆ Ee,β1 . According to a lemma in [14], if
Ee,β2 ⊆ Ee,β1 and Ee,β1 is compact in T(ϕ̂e), so is the subset Ee,β2 . It follows
that ϕ̂e ∈ C(β2). ¤

4.2 Patchability

Since the value of a continuous functional on a compact set is bounded, it follows
that, intuitively, if ϕ̂e ∈ C(β) then we need only some constant extra budget to
let ϕ̂e finish its computation on every points in Ee,β . This intuition does work
for the unit cost model. Thus, we have, if F ∈ Cu(β), then there exist c, e ∈ N
such that ϕ̂u

e = F and Eu
e,β+c = ∅. On the contrary, this intuition doesn’t work

for the answer-length cost model. In [13] we argued that the best we can have
is: If F ∈ C(β), then there exist c, e ∈ N such that ϕ̂u

e = F and Ee,2β+c = ∅
under the answer-length cost model.
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4.3 Enumerability

It is easy to show that the finite invariant closure of a type-1 complexity class
is recursively enumerable [3]. However, not every complexity class itself can be
recursively enumerated. When the cost bound function t is too small, the com-
plexity class determined by t is unlikely to be recursively enumerable [3, 12]. On
the other hand, if t is big enough to bound all finite support functions2 almost
everywhere, then the complexity class determined by t is recursively enumerable.
In particular, if t(x) ≥ |x| + 1 for all x ∈ N, then all finite support functions
are contained in the complexity class, C(t) (see [4], section 9.4). An intuitive
explanation to this is that: if the bound t allows to compute every finite support
function almost everywhere, then we can have a program patched at finitely
many points with cost bounded by t. In such a way, we can exactly enumerate
the complexity class determined by t.

Recall that every β ∈ T2TB is nontrivial. This property, unlike at type-1,
does not suffice for us to enumerate C(β). Our difficulty is that, given (σ, x) ∈
F × N, we may not be able to test if it is the case that σ ⊂ f for any input
f ∈ T under the the answer-length cost model, since querying the oracle outside
the domain of the locking fragment of β is dangerous as the returned answer
may be very huge and the machine may use up its budget in scanning the oracle
answer as required under the answer-length cost model. To solve this problem,
we imposed two rather strong assumptions on β and prove that if β satisfies the
two assumptions, then C(β) is recursive enumerable [13]. We also conjectured
that there is a β ∈ T2TB such that C(β) is not recursively enumerable. Under
the unit cost model, on the other hand, we do not need any extra assumptions
on β because the cost of querying the oracle is more manageable. We have the
following theorem.

Theorem 3. For every β ∈ T2TB, Cu(β) is recursively enumerable.

Proof: Assume that β ∈ T2TB is locking detectable. (According to Theorem
10 in Section 5, this assumption does not hurt the generality of our theorem).
The reason that we can remove the conditions in the same theorem under the
answer-length cost model [13] and makes the present proof a bit easier is that,
under the unit cost model, it is possible to let a machine that computes some
functional in Cu(β) query the oracle at some points outside the domain of the
locking fragment of β. In other words, the cost of testing whether τ ⊂ f is
manageable.

It is straightforward to obtain an S-m-n theorem on type-0 arguments as
follows: There is a recursive function s such that, for every f ∈ T and x, y ∈ N,
we have

ϕ̂s(e,x)(f, y) = ϕ̂e(f, 〈x, y〉).

2 A function f is finite support if the value of f is 0 almost everywhere.
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Then, we can use this S-m-n theorem to formulate the recursive function g as
follows:

ϕ̂g(e,a,b)(f, x) =





ϕ̂e(τ∼0, x) if ∀〈σ, y〉 ≤ a
[
ϕ̂u

e,β+b(σ
∼0, y) ⇓

]
and

∀〈σ, y〉
[
(a < 〈σ, y〉 ≤ 〈τ, x〉 ∧ ∀η ⊆ σ(a < 〈η, y〉))
⇒ ϕ̂u

e,β(σ∼0, y) ⇓
]
, where τ = f

[2Fβ(f,x)]
;

0 otherwise.
(3)

In (3), τ∼0 denotes the zero extension of τ and f[n] denotes the initial segment of
f with length n. Since β is locking detectable, it follows that Fβ is computable
(see Definition 8 for Fβ). In stead of enumerating the set of all finite invariants3

of Cu(β), we argue in the following that g exactly enumerates all indies for
functional in Cu(β).

If F ∈ Cu(β), then there is a ϕ̂-program e for F such that, Eu
e,β is compact

in T(F ). Thus, if we choose sufficiently large a, b ∈ N, we have F = ϕ̂g(e,a,b)

for some e. Note that, since β is locking detectable, we can effectively compute
Fβ(f, x), and hence we can find τ = f

[2Fβ(f,x)]
. It is clear that any machine

queries the oracle beyond τ cannot be bounded by β (since the query is too
big to place down). Thus, the information beyond τ is not necessary, and if the
condition of the if statement in (3) holds, we have ϕ̂e(f, x) = ϕ̂e(τ∼0, x).

Next, we shall argue that, for every e, a, b ∈ N, we have ϕ̂g(e,a,b) ∈ Cu(β).
Fix e, a, b ∈ N. Let F = ϕ̂g(e,a,b) and S ⊆ T × N be the set on which the
ϕ̂-program g(e, a, b) uses ϕ̂e(τ∼0, x) as its output, i.e., ϕ̂-program g(e, a, b) on
every (f, x) ∈ S, the condition of the first clause in the if statement in (3) holds.
We have two cases: (1) S is compact in T(F ) and (2) S is not compact in T(F ).
For convenience, let ((σ, x)) = {(f, x)

∣∣ f ∈ T and σ ⊂ f}.

Case 1: S is compact in T(F ).
In this case, we fix a finite open cover for S as follows:

O = {((σ0, x0)), ((σ1, x1)), . . . , ((σn, xn))} , (4)

such that, for each ((σi, xi)) ∈ O, (σi, xi) is a minimal locking fragment of
F . By the construction, σi ⊆ τ for some minimal locking fragment of β,
i.e., β(τ, xi) ↓. Let t : {0, 1, . . . , n} → N be a finite function such that, for
each i ≤ n, t(i) = ϕ̂e(σ∼0

i , xi), where ((σi, xi)) ∈ O. Then, we construct a

3 Enumerating the set of all finite invariants is a classical approach to attacking this
problem at type-1. At type-2, we may use the topological approach introduced in
[14] to defining finite invariants as two type-2 computable functionals that differ on
some compact set. To enumerate finite invariants is easy under the unit cost model,
but we need a sort of linear speedup theorem to complete our proof, and we don’t
know yet what should be a linear speedup theorem in type-2 context.
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ϕ̂-program e′ as follows:

ϕ̂e′(f, x) =





t(i) if there exists ((σi, xi)) ∈ O such that
σi ⊂ f and xi = x;

0 otherwise.

(5)

Clearly, ϕ̂e′ = F . Since we are under the unit cost model, for every (f, x) ∈
T ×N, we can check the condition in (5) to decide whether 0 or t(i) to be
returned for some i ≤ n with cost bounded by β. Therefore, F ∈ Cu(β) in
this case.

Case 2: S is not compact in T(F ). Let

O = {((σ0, x0)), ((σ1, x1)), . . .}

be any open cover of S such that, for each ((σi, xi)) ∈ O, (σi, xi) is a minimal
locking fragment of F . According to the condition of the if statement in (3),
if there are infinitely many (τ, x) such that,

∀〈σ, y〉 [(a < 〈σ, y〉 ≤ 〈τ, x〉 ∧ ∀η ⊆ σ(a < 〈η, y〉)) ⇒ ϕ̂u
e,β(σ∼0, y) ⇓]

(6)

is true, then it follows that, for all but finitely many 〈τ, x〉, (6) is true. Thus,
Eu

e,β is compact. Moreover, there are only finitely many (τ, x) such that, on
(f, x) ∈ ((τ, x)), the ϕ̂-program g(e, a, b) outputs 0 instead of ϕ̂e(f, x). Thus,
the set

A =
{
(f, x)

∣∣ F (f, x) 6= ϕ̂u
e (f, x)

}

is also compact in T(F ). Thus, we can patch e on A and the computational
cost of the patched ϕ̂-program on A does not cause it to be removed from
Cu(β). Therefore, F ∈ Cu(β). ¤

4.4 Non-Union Theorem

The Union Theorem [16] is one of the most fascinating theorems in classical
complexity theory. Not just because the technique used in the proof was new
to complexity theory back then, but also the theorem told us that most natural
complexity classes have clear boundaries in terms of Hartmanis and Stearns’s
notion of complexity classes. In other words, we can use one computable function
to exactly bound a natural complexity class in most cases. Although an arbi-
trary collection of computable functions (or, union of complexity classes) is not
necessarily a complexity class in general, but we only need a very weak condition
to have the following so-called union theorem at type-1.

Theorem 4. (McCreight and Meyer [16]) Let the sequence of recursive func-
tions, f0, f1, f2, . . ., be recursive and fi(x) ≤ fi+1(x) for all i, x ∈ N. Then,
there is a recursive function g such that C(g) =

⋃
i∈N C(fi). ¤
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According to the theorem, a complexity class such as PTIME, PSPACE,
etc., each can be exactly named by one recursive function; same to the set of
computable functions bounded by computable functions in O(f) (the big-O no-
tation). At type-2, the union theorem seems to break down. For example, the
class of type-2 basic feasible functionals is not a complexity class [13]. Neverthe-
less, in [15, 13] we imposed some quite strong but yet reasonable conditions on
the sequence of type-2 time bounds to have a type-2 union theorem under the
answer-length cost model. As a result, if we define a type-2 big-O notation as
O(β) =

⋃
a,b∈N C(aβ + b), then for each β ∈ T2TB we have some γ ∈ T2TB

such that C(γ) = O(β) under the answer-length cost model. However, the con-
ditions are not sufficient under the union cost model. The union theorem does
not hold under the unit cost mode unless the sequence of the type-2 time bounds
tends to trivial. We have the following non-union theorem.

For convenience, we define ‖σ‖ =
∑

i∈dom(σ)(|i|+ |σ(i)|+ 2) for σ ∈ F and
σ 6= ∅. By convention, let ‖σ‖ = 2 for σ = ∅.

Theorem 5 (Non-Union Theorem). For any α, β ∈ T2TB, we have

Cu(α) 6=
⋃

c∈N

Cu(cβ).

Proof: Unlike the quite involved proof for the union theorem under the answer-
length cost model, the proof for the non-union theorem above is rather straight-
forward. We simply construct a counterexample.

Fix any two α, β ∈ T2TB and (g, a) ∈ T ×N. Let τ ⊂ g and suppose that
(τ, a) is a minimal locking fragment of α and α(τ, a) = k. Consider the functional
Gk

τ,a defined as follows:

Gk
τ,a(f, x) =

{
2k+1 if x = a, τ ⊂ f, and f(max(dom(τ)) + 1) is odd,
0 otherwise.

Let d be the least point beyond the locking fragment of α on (g, a), i.e., d =
max(dom(τ)) + 1.

Claim 1: Gk
τ,a 6∈ Cu(α).

For each i ∈ N, define
σi = τ ∪ {(d, 2i + 1)}.

For each i ∈ N and f ∈ T , if σi ⊂ f , then any ϕ̂e that computes Gk
τ,a

will be clipped by α during the course of the computation on (f, a). Let
X =

⋃
i∈N((σi, a)). Clearly, X ⊆ Ee,α. Moreover, X is not compact in T(ϕ̂e)

because
O = {((σ0, a)), ((σ1, a)), . . .},

is an open cover for X without finite subcover. According to Lemma 2 in
the full version of [14], since X ⊆ Ee,α, it follows that Ee,α is not compact
in T(ϕ̂e). Therefore, Gk

τ,a 6∈ Cu(α).
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Claim 2: Gk
τ,a ∈

⋃
c∈N

Cu(cβ).

We construct an OTM, M̂u
e , that computes Gk

τ,a as follows: On any input
(f, x) ∈ T ×N, the machine will, (1) scan x and check if (x = a), then, (2)
check if τ ⊂ f, (3) check if f(d) is odd, and (4) output 0 or 2k+1 based on
the results in (1), (2), and (3).
Under the unit cost model, the cost for an OTM to compare τ(i) and f(i),
where f ∈ T and i ∈ dom(τ), is bounded by c(|i|+ |τ(i)|) for some constant
c > 1, because the OTM only has to scan at most 2 · |τ(i)| many bits to
judge if the two are identical. Note that in the case that |f(i)| > |τ(i)|, M̂u

e

does not have to scan all of f(i). Likewise, the machine can just scan the
least significant bit of f(d) to know whether f(d) is odd. Thus, the cost of
the computation of M̂u

e on any (f, x) is bounded as follows:

Φ̂u
e (f, x) ≤ c(|x|+ ‖τ‖+ |d|+ k + 1).

Since ||τ || + |d| + k + 1 is also a constant, there is a constant c′ ∈ N such
that,

Φ̂u
e (f, x) ≤ c′|x|+ c′.

Since β is a type-2 time bound, which is nontrivial, it follows that, for every
(σ, x) ∈ F ×N, β(σ, x) ≥ |x|+ 1, and thus,

c′β(σ, x) ≥ c′|x|+ c′.

That is, if M̂u
e is clocked by c′β, M̂u

e will get enough budget from c′β during
the course of the computation on every (f, x). Thus, Gk

τ,a ∈ Cu(c′β).

Therefore, from claims 1 and 2, Gk
τ,a ∈

⋃
c∈N Cu(cβ) − Cu(α), i.e., Cu(α) 6=⋃

c∈N Cu(cβ). ¤
Note that the union in Theorem 5 is a type-2 analog of the big-O notation.

Thus, O(β) is not a complexity class under the unit cost model.
Also note that the sequence we proposed above, β, 2β, 3β, . . ., is very conser-

vative in a sense that the sequence is uniformly convergent, i.e., every one in the
sequence converges at the same locking fragment, which is a very strong condi-
tion. Thus, in order to sustain the union theorem under the unit cost model, the
condition must be further strengthened. For example, we may require the value
of the sequence to be bounded on any (f, x), i.e., lim(i→∞,σ→f) βi(σ, x) ∈ N.
However, we consider such a union theorem trivial.

4.5 Anti-Gap Theorem

When people tried to find an effective operation to enlarge a type-1 complexity
class, the gap phenomena were discovered [2, 3, 5, 24]. We’ve learned that it is
impossible to have such effective operation unless some “nice” property is as-
sumed. We state a stronger version of gap theorems known as the Operator Gap
Theorem in the following.
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Theorem 6. (Constable [5], Young [24]) Given any total effective operator Θ,
we can effectively find an arbitrarily large recursive function t such that C(t) =
C(Θ(t)).

In other words, we can always find resource bound t such that the given effective
operator fails to enlarge the complexity class determined by t. Some properties
such as time-constructibility and honesty are those commonly mentioned “nice”
ones to dismiss the gap phenomena. Three major theorems in classical complex-
ity theory – Compression theorem, Gap theorem, and Honesty theorem – form
a wonderful trilogy telling a full story along this line.

In [13] we gave a preliminary idea for type-2 time-constructibility, but we
still do not fully understand what should be the meaning of a type-2 honest
functional. Under the answer-length cost model, the gap phenomena are inher-
ited from the type-1 computation, i.e., the gap phenomena are caused by the
type-1 part of the computation. We observe that no “pure” type-2 computation
is possible under the answer-length cost model because every oracle query must
be followed by an inevitable type-1 computation (i.e., reading the answer that
can go arbitrarily huge). On the other hand, under the unit cost model, the
type-2 computation becomes “purer” and the gap phenomena disappear. We see
this as a positive result because we can uniformly enlarge a complexity class.
The only condition is that, β has to be strong.

Theorem 7 (Anti-Gap Theorem). Suppose g : N → N is recursive and, for
every x ∈ N, g(x) ≥ 3x. Then, for every strong β ∈ T2TB, Cu(β) ⊂ Cu(g ◦β).

Proof: We say that (σ, a) is β-checkable, if there is an OTM under the unit
cost model, M̂u

e such that, on every (f, x) ∈ T ×N, ϕ̂u
e,β(f, x) ⇓, and

ϕ̂u
e,β(f, x) =

{
1 if σ ⊂ f and x = a;
0 otherwise.

Fix a (σ, a) ∈ F ×N such that, there is an OTM clocked by β under the unit
cost model, Mu

e,β , that can verify (σ, a) but cannot verify any (τ, a) with σ ⊂ τ .
I.e., (σ, a) is the biggest β-checkable fragment with respect to some (f, a). Such
(σ, a) must exist. Consider the following two cases.

Case 1: σ = ∅. Consider the following functional, F : T ×N → N,

F (f, x) =
{

1 if x = a and f(0) is odd;
0 otherwise.

On input (f, a) where f ∈ T and f(0) is odd, the minimum cost of any OTM
that computes F is a constant dominated by the size of a. Let the cost be k.
Clearly, k is the same as the cost of checking ({(0, 1)}, a), because only the
least significant bit of the value of f(0) has to be scanned. Thus,

k = |a|+ 1 + ‖{(0, 1)}‖ = |a|+ 5.
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But, ({(0, 1)}, a) is not β-checkable, so we have

|a|+ 5 > β({(0, 1)}, a) ≥ |a|+ 1.

In other words, the budget provided by β is not enough for any OTM, Me,
that computes F to scan the first bit of the value of f(0) in case that f(0)
is odd. Thus, ϕ̂e,β(f, a) ⇑ . A similar argument can be used to the case
that f(0) is even to conclude that ϕ̂e,β(f, a) ⇑ . Therefore, for each y ∈ N,
(({(0, y)}, a)) ⊂ Ee,β and, moreover, (({(0, y)}, a)) is an open set in T(ϕ̂e). It
follows that Ee,β is noncompact in T(ϕ̂e) and hence F 6∈ Cu(β).
Clearly, if |a| ≥ 2, then

g(β({(0, 1)}, a)) ≥ 3(|a|+ 1) > |a|+ 5.

Thus, we can have an OTM clocked by g ◦ β that computes F . Hence F ∈
Cu(g ◦ β).

Case 2: σ 6= ∅. Let n ∈ N be the least number not in dom(σ). Consider the
following functional, F : T ×N → N,

F (f, x) =
{

1 if x = a, σ ⊂ f, and f(n) is odd;
0 otherwise.

On input (f, a) where f ∈ T , σ ⊂ f, and f(n) is odd, the minimum cost of
any OTM that computes F is a constant, k, dominated by |a| and ‖σ‖, and
k is the same as the cost of checking (σ ∪ {(n, 1)}, a), which is

k = ‖σ ∪ {(n, 1)}‖+ |a|+ 1 = ‖σ‖+ |a|+ |n|+ 3.

By the assumption, (σ, a) is β-checkable and all its extensions are not, and
since β is strong F-monotone,

‖σ‖+ |a|+ |n|+ 3 > β(σ ∪ {(n, 1)}, a) ≥ β(σ, a) ≥ ‖σ‖+ |a|+ 1.

Since n is the least number not in dom(σ), it follows that |n| ≤ ‖σ‖ + 1.
Also, since |a| ≥ 1, we have

g(β(σ ∪ {(n, 1)}, a)) ≥ g(β(σ, a)) ≥ 3(‖σ‖+ |a|+ 1) ≥ ‖σ‖+ |a|+ |n|+ 3.

Similarly, when f(n) is even. For (f, x) ∈ T ×N and σ 6⊂ f or x 6= a, since
(σ, a) is β-checkable, M̂u

e clocked by β, on such (f, x), can finish the checking
and output 0. Thus, F ∈ Cu(g ◦ β).

What remains to argue is that F 6∈ Cu(β). Fix any OTM, M̂u
e , that computes

F . Suppose that q is the last query asked among dom(σ)∪ {n0} throughout the
course of computation of M̂u

e on (f, a) where σ ⊂ f . If q = n, we can slightly
modify the same argument in the previous case to conclude that F 6∈ Cu(β). If
q ∈ dom(σ), consider τy for each y ∈ N defined in the following.

τy = (σ − {(q, σ(q))}) ∪ {(q, σ(q) + y · 2|σ(q)|), (n, 1)}.
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Thus, for every y ∈ N and f ∈ T , if τy ⊂ f , then ϕ̂e,β(f, a) ⇑. This is because
(σ ∪ {(n, 1)}, a) is not β-checkable, and after the first |σ(q)| bits of the value
of f(q) scanned, the budget for M̂u

e must be used up. Thus, for every y ∈ N,
((τy, a)) ⊂ Ee,β and is an open set in T(ϕ̂e). Therefore, F 6∈ Cu(β). ¤

Note that Theorem 7 above does not hold if β is not strong (i.e., not F-
monotone). An intuitive explanation is that, if β is not strong, then it can shrink
the budget to the bottom (i.e., |x|+ 1) until it receives a locking fragment that
is too long to be seen under the budget provided by g ◦ β.

5 Properties of Type-2 Time Bounds

In this section we study the relation between type-2 time bounds and type-2
functionals. Due to the properties of type-2 time bounds, each of them determines
a limit functional as follows. (More details about limit functionals can be found
in Rogers’ [20].

Definition 8. Let β ∈ T2TB. Define Fβ : T ×N → N by

Fβ = λf, x.

(
lim
σ→f

β(σ, x)
)

.

Some obvious properties of the Limit functional, ]Fβ , come directly from the
properties of β. For example, Fβ is a continuous functional and total on T ×N.
Following the type-2 almost-everywhere relation, ≤∗

2, defined in [14], we can
prove that,

ϕ̂e ∈ C(β) =⇒ Φ̂e ≤∗
2 Fβ . (7)

However, the converse of (7) is false because the history of requesting budget
from β does matter. Thus, Fβ1 = Fβ2 does not imply that C(β1) = C(β2),
which means that the budget provided by β in the limit may not be useful for
the computation. This causes the major difference between complexity classes
defined by T2TB and type-2 functionals. However, we may want to have a
certain computable operation on β’s to force the budget in the limit to be used
earlier during the computation; in such a way all computations with complexity
bounded by Fβ can be finished. We argue that such an effective operation is
impossible. We state this in the following theorem.

Theorem 8. There is no recursive operator Θ : T2TB → T2TB such that, for
any β ∈ T2TB, ϕ̂e : T ×N → N, and (f, x) ∈ T ×N, we have

Φ̂e(f, x) ≤ Fβ(f, x) ⇐⇒ ϕ̂e,Θ(β)(f, x) ⇓ .

Proof: We argue that the negation of the theorem will lead to a solution to the
halting problem. Define F : T ×N ⇀ N by

F (f, x) = ϕx(x).
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Clearly, we can have a ϕ̂-program e for F such that, for each (f, x) ∈ T ×N, if
ϕx(x) ↓, then

Φ̂e(f, x) ≤ Φx(x) + |x|+ c,

where c ≥ 1 is some constant depending on the OTM. Define β : F ×N → N
by

β(σ, k) =





t + |k|+ c if i is the least element of dom(σ), provided:
{0, 1, . . . , i} ⊆ dom(σ) and σ(i) = 〈k, t〉 for some t;

|k|+ c if no such i exists.

One can check that β is F-monotone, convergent, and nontrivial. Hence β ∈
T2TB. Let K = {x | x ∈ N, ϕx(x) ↓} and k0, k1, . . . be a fixed recursive enu-
meration of K without repetition. For each i ∈ N, let ti = Φki

(ki). Define
κ : N → N by

κ(i) = 〈ki, ti〉. (8)

Clearly, κ is total recursive. For any k ∈ K, there exists i ∈ N such that, k = ki

and κ(i) = 〈k, Φk(k)〉, and thus,

Fβ(κ, k) = Φk(k) + |k|+ c.

When k ∈ K, we have

Φ̂e(κ, k) ≤ Φk(k) + |k|+ c = Fβ(κ, k).

By contradiction, suppose a Θ such as in the statement of the theorem exists.
From the definition of F , the OTM M̂e would never make any oracle query.
Therefore, the overall budget provided by Θ(β) for M̂e on (κ, k) is Θ(β)(∅, k).
From the assumption, if x ∈ K, then the budget Θ(β)(∅, x) must be enough for
computing ϕ̂e(κ, x). Therefore, we can have a type-1 recursive function to decide
if any given x is in K as follows.

ϕp(x) =
{

1 if Φx(x) ≤ Θ(β)(∅, x),
0 otherwise.

That gives a recursive characteristic function of K, which is impossible. ¤

Theorem 9. There is a β ∈ T2TB such that Fβ is total, but Fβ is not com-
putable.

The original form of the theorem above is due to Poúr-EL [18]. In Rogers’
terms [20], the theorem states that not every limit functional corresponds to a
recursive functional that is total on recursive functions. Here we omit the proof.
Consider the following corollary.

Corollary 1. There is β ∈ T2TB that is not locking detectable.

It is clear that if β is locking-detectable, then Fβ is computable. Therefore,
we immediately obtain the corollary. The corollary seems to be a disadvantage
of our formulation, but in the next section we shall argue that it is not the case.
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5.1 Locking Detectable Type-2 Time Bounds

Locking detectability probably is the most useful property we want to have in
our proofs. For example, the proof of Theorem 3 makes such assumption. In this
section we argue that making this seemingly strong assumption in fact does not
lose the generality of our proofs under both cost models. Consider the following
definition.

Definition 9 (Equivalent Type-2 Time Bounds). We say that β and α are
equivalent if the two determine the same complexity class, i.e., C(β) = C(α).

Our approach is to construct an effective operator that converts any β ∈
T2TB to an equivalent locking detectable one. We state the main theorem first.

Theorem 10. There is an effective operator ΘL : T2TB → T2TB such that,
for every β ∈ T2TB, ΘL(β) is a locking detectable type-2 time bound equivalent
to β. Moreover, if β is strong, then so is ΘL(β).

Before we prove the theorem, let’s fix some definition for our convenience in
the arguments.

Definition 10 (β-Inaccessible Points). Let β ∈ T2TB and (σ, a) ∈ F ×N
with σ 6= ∅. Suppose that dom(σ) = {x0, x1, x2, . . . , xn} and x0 < x1 < · · · < xn.
For each xi ∈ dom(σ), we say that xi is a β-inaccessible point in (σ, a) if

1. i 6= 0 and xi−1 is a β-inaccessible point in (σ, a), or
2. |xi| > β(σ′, a), for every σ′ ⊆ {xo, x1, . . . , xi−1}.

Also, let IAβ(σ, a) denote the set of all β-inaccessible points in (σ, a).

For every β ∈ T2TB and (σ, a) ∈ F ×N, it is clear that IAβ(σ, a) is com-
putable. However, we observe that, if there are β-inaccessible points in (σ, a),
then there is no β-clocked OTM that can query exactly all dom(σ) to the oracle
on any (f, a) with σ ⊂ f . Intuitively, we obtain a locking detectable type-2 time
bound equivalent to β by removing all β-inaccessible points from input (σ, a).
Note that we do not require an OTM to make queries in any particular order;
hence having β-inaccessible points in (σ, a) does not mean that, if σ ⊂ τ , then
(τ, a) also has β-inaccessible points. In other words, we cannot simply lock our
new time-2 time bound to the value of β(σ′, a) for some σ′ ⊆ σ. We solve this
problem by searching the base segment defined as follows.

Definition 11 (Base Segments). Let β ∈ T2TB and (σ, a) ∈ F × N. For
τ ⊆ σ, we say that (τ, a) is the base segment in (σ, a) with respect to β if

1. dom(τ) is a finite initial segment of N,
2. IAβ(τ, a) = ∅, and
3. for all τ ′ ⊃ τ , IAβ(τ ′, a) 6= ∅.
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It is clear that, given any β ∈ T2TB and (σ, a) ∈ F × N, we can effec-
tively decide whether the base segment in (σ, a) exists. Moreover, if the base
segment does exist in some (σ, a), then we can effectively obtain it. We state
this observation as follows:

Lemma 1. Let β ∈ T2TB. Fix any (f, a) ∈ T ×N. There exists a unique τ ∈ F
with τ ⊂ f such that, (τ, a) is the base segment in (σ, a) with respect to β for all
σ ∈ F with τ ⊆ σ. Moreover, if τ ⊂ σ, then there are β-inaccessible points in
(σ, a). ¤

The lemma above is obvious due to the fact that every β ∈ T2TB is con-
vergent. Note that, the uniqueness comes from the requirements that a base
segment must be an initial segments of some total function.

Proof of Theorem 10: Our proof is based on the following imple idea: Given any
β ∈ T2TB and (σ, a) ∈ F ×N, if the base segment in (σ, a) is found, say (τ, a),
then we lock the type-2 time bound with value β(τ, a). The construction of such
ΘL is quite straightforward as in Figure 2.

Program for ΘL(β)

input σ : F , x : N;
var τ : F ;

find (τ, x) the base segment in (σ, x) with respect to β;
if such (τ, x) does not exist

then τ ←− {〈i, σ(i)〉 | i ∈ dom(σ) and i 6∈ IAβ(σ, x)};
output β(τ, x);

End program

Fig. 2. Program for ΘL(β)

We shall argue that ΘL(β) is computable, nontrivial, bounded, convergent,
locking detectable, and C(β) = C(ΘL(β)). Let ΘL(β) = α.

Claim 1: α ∈ T2TB and is locking detectable. Let (f, a) ∈ T ×N.

1. Computability: Since β and IAβ are computable, it follows that the construc-
tion shown in Figure 2 is effective.

2. Nontriviality: The value of α is based on the value of β on the same type-0
input. Thus, α is nontrivial as long as β is.

3. Bounddedness: Since every β-inaccessible points in any σ ⊂ f will be re-
moved, there is no β-inaccessible point in τ ⊂ f . It follows that, for every
σ ⊂ f ,

α(σ, a) = β(τ, a) ≤ lim
η→f

α(η, a).
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4. Convergence: Since β itself must be convergent, it is clear that if we keep
extending the finite initial segment σ of f and feed (σ, a) to α, eventually
(f[n], a) will contain the base segment, and then α will be locked.

5. Locking detectability: Since we can effectively decide whether the base seg-
ment in (σ, a) exists, by Lemma 1, we can construct a locking detector for
α.

Claim 2: C(β) = C(α). We shall prove that, for any ϕ̂-program e and (f, a) ∈
T ×N,

ϕ̂e,β(f, a) ⇓ if and only if ϕ̂e,α(f, a) ⇓ .

Fix a ϕ̂-program, e, and let (f, a) ∈ T ×N. Consider the following two cases.

1. Suppose ϕ̂e,β(f, a) ⇑ . From the construction of α, we know that the only
situation in which α(σ, a) ≤ β(σ, a) must be the case that there are some
β-inaccessible points in (σ, a). But if any OTM attempts to query at a β-
inaccessible point, the OTM will be clipped down (⇑). Therefore,

ϕ̂e,β(f, a) ⇑ ⇒ ϕ̂e,α(f, a) ⇑ .

2. Suppose ϕ̂e,β(f, a) ⇓ . Let dom(σt) be the collection of queries made during
the period from the beginning of the computation up to the moment t. It
is clear that there must not be any β-inaccessible point in (σt, a), because
otherwise ϕ̂e,β(f, a) ⇑ . Thus, according to the construction of α, we know
that β(σt, a) = α(σt, a). Therefore, at any moment t during the computation,
the budget α(σt, x) is also enough to support the computation. This proves
that ϕ̂e,α(f, x) ⇓ .

For F-monotonicity, let β be F-monotone, we shall argue that ΘL(β) is also
F-monotone. Let β be F-monotone. Fix any a ∈ N and σ1, σ2 ∈ F with σ1 ⊆ σ2.
Since β is strong, we have β(σ1, a) ≤ β(σ2, a).

1. Suppose that the base segment, (τ, a), is found in (σ1, a). By Lemma 1, the
same base segment will also be found in (σ2, a). Thus, α(σ1, a) = α(σ2, a) =
β(τ, a).

2. Suppose that the base segment, (τ, a), is found in (σ2, a) but not found in
(σ1, a). Since the base segment is the maximal segment without β-inaccessible
points, thus [dom(σ1)− IAβ(σ1, a)] ⊂ dom(τ).

3. Suppose that neither (σ1, a) nor (σ2, a) contains the base segment. In this
case, we have that [dom(σ1)− IAβ(σ1, a)] ⊆ [dom(σ2)− IAβ(σ2, a)].

Since β is strong, it follows that α(σ1, a) ≤ α(σ2, a) in cases 2 and 3. Therefore,
each of the three cases above concludes that α(σ1, a) ≤ α(σ2, a), and hence α is
F-monotone. ¤
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6 Conclusion and Futures

Type-2 computation to some extent is a better model for many real-world com-
putations. Just to name some: real computation, real time (interactive) compu-
tation, mass database inquiries, machine learning, Web search engine, and so on,
where we do not use all available information just as the OTM does not use the
entire knowledge of its oracle. But as a matter of fact, type-2 complexity theory
is a highly underdeveloped area mainly because there is no type-2 counterpart
of the Church-Turing Thesis. A tiny difference between computation models can
easily cause manifest discrepancy in the notion of computability. The situation
becomes even worse when computational complexity is concerned. Even with
the OTM, a widely accepted standard for type-2 computation, the way we treat
the answers returned from the oracle radically shapes the outlook of the com-
plexity theory at type-2. The answer-length cost is the most common cost model
assumed in the literatures. This obviously is not the only choice (we do not read
every entry returned from the Google search engine, do we?). We thus propose a
reasonable alternative cost model – unit cost model. We have learned that even
under the same clocking scheme, this cost model gives us a very different type-2
complexity structure. For example, the union theorem and the gap theorem are
much more fragile under the unit cost model than under the answer-length cost
model.

Along the line of classical complexity theorems, there are apparently many
questions yet to be answered. For example, is there any reasonable version of
the Speedup theorem? Hierarchy theorem? What is the meaning of complete-
problems at type-2? Is the classical notion of honesty necessarily trivial at type-2?
If yes, what should it be and what problem it is meant to fix? BFF does not fit
our notion of complexity classes, but are there any intuitively feasible classes that
do? Etc, etc. All these questions should be answered and we speculate that the
clocking scheme together with our type-2 time bounds has provided an accessible
approach to explore this long missing piece of a more general complexity theory.
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