
Clocking Type-2 Computation in The Unit Cost
Model

Chung-Chih Li

School of Information Technology
Illinois State University, Normal, IL 61790, USA

Abstract. In [12] we defined a class of functions called Type-2 Time
Bounds (henceforth T2TB) for clocking the Oracle Turing Machine
(OTM) in order to capture the long missing notion of complexity classes
at type-2. In the present paper we further advance the type-2 complexity
theory under our notion of type-2 complexity classes. We have learned
that the theory is highly sensitive to how the oracle answers are handled.
We present a reasonable alternative called unit cost model, and examine
how this model shapes the outlook of the type-2 complexity theory. Un-
der the unit cost model we prove two theorems opposite to the classical
union theorem and gap theorem. We also investigate some properties of
T2TB including a very useful theorem stating that there is an effec-
tive operator to convert any β ∈ T2TB into an equivalent one that is
locking-detectable. The existence of such operator allows us to simplify
many proofs without loss of generality.1

1 Introduction

Let 〈ϕi〉i∈N be an acceptable programming system and 〈Φi〉i∈N be a complexity
measure associated to 〈ϕi〉i∈N, where N is the set of natural numbers. Simply
put, one may consider ϕi as the function computed by the ith Turing machine.
A formal definition for an acceptable programming system can be found in [16,
15]. For the complexity measure, one may consider Φi(x) as the amount of re-
source needed to compute ϕi on x. We use ϕi(x) ↓= y to denote that the
computation of ϕi on x is converged and its value is y. Similarly, Φi(x) ↓= m
means that the cost of computing ϕi on x is converged to m. In [7] Hart-
manis and Stearns gave a precise definition for complexity classes as follows:
C(t) =

{
f

∣∣ ∃i[ϕi = f and Φi ≤∗ t
]}, where Φi ≤∗ t means that the relation,

Φi(x) ≤ t(x), holds on all but finitely many values of x. Within two years, Blum
proposed two axioms in [1] as the basic requirements for any reasonable dynamic
complexity measures to meet. The two requirements are straightforward: for any
i, x, m ∈ N, we require (i) ϕi(x) ↓ if and only if Φi(x) ↓, and (ii) Φi(x) = m is
effectively decidable. The two axioms had successfully lifted the study of com-
plexity theory to an abstract level with rich results that are independent from
1 We’ve omitted all detailed proofs due to the space constraints. For a full version:
http://www.itk.ilstu.edu/faculty/chungli/mypapers/Full UnitCost.pdf.

any specific machine models. These two landmark papers initiated an important
study now known as abstract complexity theory in theoretical computer science.

It is obvious that the complexity theory should be extended into type-2 (a.k.a.
second-ordered) computation. This inquiry can be traced back to Constable’s
1973 paper [5] in which he asked what should a type-2 complexity theory look
like? However, only a few scattered works had been done in the past three
decades due to the difficulty of having a generally accepted abstraction for type-
2 computation. In particular, we face a fundamental problem that there is no
Church-Turing thesis at type-2. As a result, the notion of asymptotical behavior
at type-2 and the way of clocking whatever type-2 computing devices become
not quite as intuitive as ordinary type-1 computation. Recently, we introduced
a notion of type-2 asymptotical behavior in [11] to catch the idea of its type-
1 counterpart – for all but finitely many. Using this notion and the clocking
scheme with type-2 time bounds proposed in [12], we describe a natural notion
of type-2 complexity classes that seems to be a solid ground for type-2 complexity
theory to take off. In the present paper, we further study the properties of our
type-2 time bounds and point out that the type-2 complexity theory is highly
sensitive to the actual cost model used in the clocking scheme. We believe that
our investigation initiates a sound framework for theorists to further speculate a
more complete machine-independent complexity theory for type-2 computation.

Notations: We first fix some necessary notations. By convention, natural num-
bers are taken as type-0 objects and functions over natural numbers are type-1
objects. Type-2 objects are functionals that take as inputs and produce as out-
puts type-1 objects. Let type-0 ⊂ type-1 ⊂ type-2. We are interested only in total
functions of type N → N when they are taken as inputs of type-2 functionals.
For convenience, let T denote the set of total functions of type N → N and P
the set of partial functions of type N ⇀ N. Also, let F denote the set of finite
functions, i.e., F ⊂ P and σ ∈ F if and only if dom(σ) ⊂ N and card(σ) ∈ N.
We fix a canonical indexing for F so we can treat any function in F as a natural
number when it is taken as the input of some type-1 function. Let 〈·, ·〉 be the
standard pairing function defined in [15]. Thus, for every σ ∈ F and x ∈ N,
there is a unique 〈σ, x〉 ∈ N. Let |n| be the length of the presentation of n ∈ N.
Unless stated otherwise, we let a, b, x, y, z range over N, f, g, h range over T ,
and F, G,H range over type-2 functionals. Without loss of generality we restrict
type-2 functionals to our standard type T ×N ⇀ N. Thus, we can follow the
tradition by using the OTM as our standard formalism for type-2 computation.
We also fix some necessary conventions for OTM’s in the following paragraph.

Oracle Turing Machines: In addition to the standard I/O tape of a TM, an OTM
has two extra tapes called query tape and answer tape. The type-0 numerical
input is prepared at the beginning of the I/O tape and the type-1 functional input
is prepared as a function oracle attached to the machine before the computation
begins. During the course of computation, if the OTM needs some value from
the function oracle, the OTM have to place the quetion to the query tape and
then transit to a special state called query state. Then, the oracle will place the

answer to the answer tape in one step; no matter how big the answer might be.
As for the classical complexity theory, we fix a programming system 〈ϕ̂i〉i∈N
associated with a complexity measure 〈Φ̂i〉i∈N for our OTM’s. Conventionally,
we take the number of steps an OTM performed as our time complexity measure.
Note that the steps for the OTM to prepare the query and read the answer are
counted as a part of the computational cost.

2 Type-2 Complexity Classes and Time Bounds

Seth followed Hartmanis and Stearns’s notion to define type-2 complexity classes
in [18] where he proposed two alternatives:

1. Given recursive t : N → N, let DTIME(t) denote the set of type-2 functionals
such that, for every functional F ∈ DTIME(t), F is total and there is an
OTM M̂e that computes F and, on every (f, x) ∈ T ×N, M̂e halts within
t(m) steps, where m = |max({x}∪Q)| and Q is the set of all answers returned
from the oracle during the course of the computation.

2. Given computable H : T ×N → N, let DTIME(H) denote the set of type-2
functionals such that, for every functional F ∈ DTIME(H), F is total and
there is an OTM M̂e that computes F and, on every (f, x) ∈ T ×N, M̂e

halts within H(f, x) steps.

The key idea behind Seth’s complexity classes is directly lifted from [7]. In fact,
the same idea can also be found in other works such as [8, 17] along the line of
machine characterizations. However, we face some problems that do not exist
in type-1 computation. For example, in one of Seth’s definitions, the resource
bound is determined by the set of all answers returned from the oracle; but
this set in general is not computable and hence it can’t be available before
the computation completes. Alternatively, we should update the resource bound
dynamically upon each answer returned from the oracle during the course of the
computation. But if we do so, there is no guarantee that a clocked OTM must
be total. For example, Cook’s POTM [6] is an OTM bounded by a polynomial
in this manner but a POTM may run forever. Kapron and Cook’s proposed
their remedies in the context of feasible functionals in [8] and gave a very neat
characterizations of type-2 Basic Feasible Functionals (BFF), where the so-called
second-ordered polynomial is used as the resource bound. We may adapt all these
ideas with our ≤∗

2 defined in [11] and extend the second-ordered polynomial to
a general type-2 computable functional to have the following complexity class:

DTIME(H) = {F
∣∣ ∃e[ϕ̂e = F and Φ̂e ≤∗

2 H]}. (1)

DTIME(H) seems to be a perfect analog of classical DTIME. However, we do
not think using a type-2 functional as a resource bound is proper because the
bound should not depend on information that is irrelevant to the computation.
In other words, we prefer the clocking scheme of POTM. To avoid the problem
of POTM we mentioned, we give a class of functions called Type-2 Time Bounds
denoted by T2TB in order to properly clock OTMs [12].

Definition 1 (Type-2 Time Bounds). Let β : F ×N → N. We say that:

1. β is nontrivial, if for every (σ, a) ∈ F ×N, β(σ, a) ≥ |a|+ 1;
2. β is bounded, if for every (f, x) ∈ T × N, σ ∈ F , and σ ⊂ f, we have

β(σ, x) ≤ limτ→f β(τ, x);
3. β is convergent, if for every (f, a) ∈ T ×N, there exists σ ∈ F with σ ⊂ f

such that, for all τ with σ ⊆ τ , we have β(σ, a) = β(τ, a);
4. β is F-monotone, if for every a ∈ N and σ, τ ∈ F with σ ⊆ τ , we have

β(σ, a) ≤ β(τ, a).

If β is computable, nontrivial, bounded, and convergent, we say that β is a type-2
time bound. Moreover, if β is F-monotone, we say that β is strong.2

The properties listed in Definition 1 are formulated so to catch our intuition
about what a resource bound should be in clocking the OTM (see the full ver-
sion for details). By a standard diagonalization, one can prove that T2TB is
not recursively enumerable. This indeed is an uneasy fact, since being able to
enumerate T2TB is a property that can make many proofs possible or easier.
Let β(σ, x) ↓ denote the situation that ∀τ ⊇ σ[β(σ, a) = β(τ, a)]. If β(σ, x) ↓, we
say that (σ, x) is a locking fragment of β.

Definition 2 (Locking Detectors). Let β ∈ T2TB. We say that ` is a
locking detector of β if ` : F × N → {0, 1} is computable and (i) ` is F-
monotone, (ii) ∀(σ, x) ∈ F ×N[(`(σ, x) = 1) ⇒ β(σ, x) ↓], and (iii) ∀(f, x) ∈
T ×N[limσ→f `(σ, x) = 1].

If β ∈ T2TB has a locking detector `, we say that β is locking detectable. If
`(σ, x) = 1, then (σ, x) is a locking fragment of β. It is clear that whether a given
β on some (σ, x) has converged is undecidable. Thus, we cannot simply assume
that every type-2 time bound is locking detectable. Nevertheless, we have a very
positive theorem allowing us to make that assumption without loss of generality
(see Theorem 9 in Section 5).

3 A Clocking Scheme and Two Cost Models

We present a clocking scheme using our T2TB. This scheme is used implicitly
in some works such as Kapron and Cook’s [8], Seth’s [18], and Royer’s [17].

Definition 3 (Clocked OTM). Let β ∈ T2TB and M̂e be an OTM with index
e. We say that M̂e is clocked by β if M̂e is simulated by the procedure shown in
Figure 1. Such a clocked OTM is denoted by M̂e,β and the functional computed
by M̂e,β is denoted by ϕ̂e,β.

Consider the procedure in Figure 1. The budget provided by β is computed
upon every answer returned from the oracle during the course of the simulation
2 In [12] we used WB to denote the set of type-2 time bounds and SB to denote the

set of strong type-2 time bounds. Clearly, SB ⊂ WB and SB 6= WB.

Program for Clocked OTM cMe,β :
input (f, x) ∈ T ×N;
var σ ∈ F ; q, y, expense, budget ∈ N; /* variable declaration */
σ ←− ∅; expense ←− 0; budget ←− β(σ, x); /* initialization */

Simulate cMe on (f, x) step by step and upon each step completed do:
expense ←− expense + 1;
if (expense > budget) /* check budge */

then output ⊥ and stop; /* ⊥ is the bottom symbol. (⇑) */

if (cMe halts with the output y)
then output y and stop; /* simulation completed. (⇓) */

if (the step just simulated completes an oracle query)
then do

q ←− current query;
σ ←− σ ∪ {(q, f(q))}; /* update query-answer set */
budget ←− β(σ, x); /* update budget */

end-do;
Resume the simulation;

End program

Fig. 1. A Clocking Scheme for OTM’s

of M̂e on (f, x). If the simulation has overrun the budget, then the simulation
will be terminated at the line marked (⇑). In this case we say that M̂e is clipped
down by β on (f, a) denoted by ϕ̂e,β(f, a) ⇑. On the other hand, if the simulation
reaches the line marked (⇓), which means that the simulation of M̂e on (f, a) is
successfully completed, then we say that ϕ̂e,β(f, a) converges to value ϕ̂e(f, a).
We denote this situation by ϕ̂e,β(f, a) ⇓. Since β is convergent, it follows that the
simulation of M̂e on (f, a) will either complete or eventually be clipped down by
the clock. Therefore, for any β ∈ T2TB, ϕ̂e,β is a total computable functional
of type T ×N → N. This removes the problem of POTM.

Theorem 1. Given any computable F : T ×N → N and β ∈ T2TB, there is a
ϕ̂-program e for F such that ϕ̂e 6= ϕ̂e,β.

The theorem above show that arbitrarily complex ϕ̂-programs exist. The
proof is an easy application of classical recursion theory. Although the locking
fragment of β in general is undecidable (see Section 5), we need not to know the
value of β in the limit in order to construct an arbitrarily complex ϕ̂-program for
any given computable type-2 functional. This is similar to the ordinary type-1
computation. A slightly more involved theorem is the type-2 version of Rabin
Theorem [14] stating that, given any β ∈ T2TB, there is a 0-1 valued computable
functional that cannot be computed by any ϕ̂e,β . We prove a versions in [11]
where the bound function is simply a computable type-2 functional. The proof
is perfectly valid under the present clocking scheme with T2TB.

Unfortunately, the properties of β ∈ T2TB and our intuitive clocking scheme
are not sufficient to standardize a framework for type-2 complexity theory. The

way an OTM handles the oracle answers does matter. We have the following two
conventions under our clocking scheme.

Definition 4 (Two Cost Models for OTM’s).

1. Answer-Length Cost Model: Whenever the oracle returns an answer to the
oracle query, the machine is required to read every bit of the answer.

2. Unit Cost Model: The machine needs not to read any bit of the oracle answer
unless the machine decides to do so.

In other words, the cost for each answer returned from the oracle under the
answer-length cost model is one unit step plus the length of the answer, while the
other model is one. The underlying cost model used in [8, 17, 18] are the answer-
length cost model. Also, the outline of a type-2 complexity theory given in [12]
is also based on the answer-length cost model. The answer-length cost model
from many aspects is more manageable. Nevertheless, we do not think the unit
cost model is merely a peculiar convention. On the contrary, the unit cost model
is rather reasonable in real computation. For example, only the first bit of the
answer is needed to decide whether it is odd or even. However, the controversial
part is that, under the unit cost model, the computation can aggressively gain
some budget by just querying the oracle without reading the answers. This trick
makes the complexity theory under the unit cost model much flatter than the
theory under the other model. For example, there exist certain versions of Union
Theorems [12] and Gap Theorems [10] under the answer-length cost model, but
the theorems fail to hold under the unit cost model.

4 Complexity Theory under The Unit Cost Model

We explicitly make the notations for the unit cost model different by using a
superscript u as follows: M̂u

e , ϕ̂u
e , Φ̂u

e , M̂u
e,β , ϕ̂u

e,β , and Φ̂u
e,β . For example, M̂u

e is
the unit cost model OTM with index e, and ϕ̂u

e,β denotes the functional computed
by M̂u

e with clock β. Since the two models do not differ in computability, we
have ϕ̂e = ϕ̂u

e for every e. On the other hand, Φ̂e 6= Φ̂u
e , and hence ϕ̂e,β 6= ϕ̂u

e,β in
general. Unless stated otherwise, if the superscript is omitted from the statement
of some theorem, we mean that the theorem holds under both cost models. We
adapt the notion of type-2 complexity classes proposed in [10–12] and alter the
cost model to the unit cost model. The exception set, Eu

e,β is defined as follows:

Eu
e,β =

{
(f, x) ∈ T ×N

∣∣ ϕ̂u
e,β(f, x) ⇑}

.

We also adopt the topology introduced in [11], i.e., for every continuous func-
tional F : T ×N → N, T(F) is the topology obtained by taking the set of total
extensions of every minimum locking fragment of F as a basic open set. Since
each functional ϕ̂e is continuous, the topology T(ϕ̂e) is well defined. It’s also
clear that such T(F) is induced from the Baire topology. Note that, we require
σ to be the minimum locking fragment, otherwise T(F) will inflate to the Baire
topology.

Definition 5 (Type-2 Complexity Classes). Let β ∈ T2TB. Define the set
of computable type-2 functionals Cu(β) as

Cu(β) =
{
ϕ̂e : T ×N → N

∣∣ e ∈ N and Eu
e,β is compact in T(ϕ̂e)

}
.

Inclusion property: In [11] we pointed out that it doesn’t seem likely to have
a reasonable notion for type-2 asymptotic relation, ≤∗

2, that is transitive due
to the topological constraints. Thus, if a type-2 complexity class is defined by
some type-2 functional in the classical manner such as (1), a bigger resource
bound does not always promise a bigger complexity class. Our clocking scheme
and type-2 time bounds can easily fix this problem. This adds another reason to
why we do not think using type-2 functionals as resource bounds is appropriate.
Note that the theorem below holds under both cost models.

Theorem 2. For every β1, β2 ∈ T2TB, [β1 ≤ β2] =⇒ [C(β1) ⊆ C(β2)].

Since the value of a continuous functional on a compact set is bounded, it
follows that, intuitively, if ϕ̂e ∈ C(β) then we need only some constant extra
budget to let ϕ̂e finish its computation on every points in Ee,β . This intuition
indeed is correct under the unit cost model, i.e., if F ∈ Cu(β), then there exist
c, e ∈ N such that ϕ̂u

e = F and Eu
e,β+c = ∅. However, under the answer-length

cost model, we need more than a constant extra budge as shown in [10]: If
F ∈ C(β), then there exist c, e ∈ N such that ϕ̂u

e = F and Ee,2β+c = ∅ under
the answer-length cost model.

Enumerability: It is easy to show that the finite invariant closure of a type-1
complexity class is recursively enumerable [2]. However, not every complexity
class itself can be recursively enumerated. When the cost bound function t is
too small, the complexity class determined by t is unlikely to be recursively
enumerable [2, 9]. On the other hand, if t is big enough to bound all finite sup-
port functions3 almost everywhere, then the complexity class determined by t is
recursively enumerable. In particular, if t(x) ≥ |x| + 1 for all x ∈ N, then all
finite support functions are contained in the complexity class determined by t
(see [3], section 9.4). Although we required every β ∈ T2TB to be nontrivial,
this requirement is not sufficient for enumerating C(β). The difficulty is that,
given (σ, x) ∈ F ×N, we may not be able to test if it is the case that σ ⊂ f
for any input f ∈ T under the the answer-length cost model, since querying the
oracle outside the domain of the locking fragment of β is dangerous, which may
cause a huge returned answer and the OTM will use up its budget in scanning
the entire answer as required under the answer-length cost model. In [10] we im-
posed two rather strong conditions to have C(β) being recursively enumerable.
We also conjecture that there exists β ∈ T2TB such that C(β) is not recursively
enumerable. On the contrary, the cost of querying the oracle is more manageable
under the unit cost model. As a result, we have the following theorem without
any extra condition on β needed.

Theorem 3. For every β ∈ T2TB, Cu(β) is recursively enumerable.
3 A function f is finite support if the value of f is 0 almost everywhere.

Non-Union Theorem: The Union Theorem [13] is one of the most fascinating
theorems in classical complexity theory. Not just because the technique used in
the proof then was new to complexity theorists, but also the theorem told us that
most natural complexity classes have clear boundaries in terms of the bounds
that determine Hartmanis and Stearns’s complexity classes. In other words, we
can use one computable function to exactly bound any given natural complexity
class. Although any arbitrary union of computable functions is not necessarily
a complexity class in general, we only need a very weak condition to have the
following theorem known as the union theorem.

Theorem 4 (McCreight & Meyer [13]). Let the sequence of recursive func-
tions, f0, f1, f2, . . ., be recursive and fi(x) ≤ fi+1(x) for all i, x ∈ N. Then,
there is a recursive function g such that C(g) =

⋃
i∈N C(fi).

According to the theorem, a complexity class such as PTIME, PSPACE,
etc., each can be exactly determined by one recursive function; same to the set
of computable functions bounded by computable functions in O(f) (the big-O
notation). At type-2, the union theorem seems to break down. For example, the
class of type-2 basic feasible functionals is not a complexity class [10]. Neverthe-
less, in [12, 10] we imposed some quite strong but yet reasonable conditions on
the sequence of type-2 time bounds to have a type-2 union theorem under the
answer-length cost model. As a result, if we define a type-2 big-O notation as
O(β) =

⋃
a,b∈N C(aβ + b), then for each β ∈ T2TB there exists γ ∈ T2TB such

that C(γ) = O(β) under the answer-length cost model. However, the conditions
are not sufficient under the union cost model. The union theorem does not hold
under the unit cost mode unless the sequence of the type-2 time bounds tends
to trivial.

Theorem 5 (Non-Union Theorem). For any β ∈ T2TB, there is no α ∈
T2TB such that Cu(α) =

⋃
c∈N Cu(cβ).

Thus, O(β) is not a complexity class under the unit cost model. Note that the
sequence we proposed above, β, 2β, 3β, . . ., is very conservative in a sense that
the sequence is uniformly convergent, i.e., every one in the sequence converges at
the same locking fragment, which is a very strong condition. Thus, the condition
must be further strengthened if we want to sustain the union theorem under the
unit cost model. For example, we may require the value of the sequence to be
bounded on any (f, x), i.e., lim(i→∞,σ→f) βi(σ, x) ∈ N. However, we consider a
union theorem under such strong condition trivial.

Anti-Gap Theorem: When people tried to find an effective operation to enlarge
a type-1 complexity class, the gap phenomena were discovered [2, 4]. We have
learned that it is impossible to have such effective operation unless some “nice”
property is assumed. We state a stronger version of gap theorems known as the
Operator Gap Theorem in the following.

Theorem 6 (Constable [4] & Young [19]). For any total effective operator
Θ, we can effectively find an arbitrarily large recursive function t such that C(t) =
C(Θ(t)).

In other words, we can always find resource bound t such that the given effective
operator fails to enlarge the complexity class determined by t. Some properties
such as time-constructibility and honesty are those commonly mentioned “nice”
ones to dismiss the gap phenomena. Three major theorems in classical complex-
ity theory – Compression theorem, Gap theorem, and Honesty theorem – form
a wonderful trilogy telling a full story along this line.

In [10] we gave a preliminary idea for type-2 time-constructibility, but we
still do not fully understand what should be the proper meaning of type-2 hon-
est functionals. Under the answer-length cost model, the gap phenomena are
inherited from the type-1 computation, i.e., the gap phenomena are caused by
the type-1 part of the computation. We observe that no “pure” type-2 computa-
tion is possible under the answer-length cost model because every oracle query
must be followed by an inevitable type-1 computation (i.e., reading the answer
that can go arbitrarily huge). On the other hand, under the unit cost model, the
type-2 computation becomes “purer” and the gap phenomena disappear. We see
this as a positive result because we can uniformly enlarge a complexity class.
The only condition is that, β has to be strong.

Theorem 7 (Anti-Gap Theorem). Suppose g : N → N is recursive and, for
every x ∈ N, g(x) ≥ 3x. Then, for every strong β ∈ T2TB, Cu(β) ⊂ Cu(g ◦β).

Note that Theorem 7 above does not hold if β is not strong (i.e., not F-
monotone). An intuitive explanation is that, if β is not strong, then it can shrink
the budget to the bottom (i.e., |x|+ 1) until it receives a locking fragment that
is too long to be seen under the budget provided by g ◦ β.

5 Properties of Type-2 Time Bounds

In this section we study the relation between type-2 time bounds and type-2
functionals. It is clear that each type-2 time bound determines a limit functional
as follows. (More details about limit functionals can be found in Rogers’ [15]).

Definition 6. Given any β ∈ T2TB, define Fβ = λf, x.(lim
σ→f

β(σ, x)).

Some obvious properties of this limit functional, Fβ , come directly from the
properties of β. For example, Fβ is a continuous functional and total on T ×N.
Taking the type-2 almost everywhere relation, ≤∗

2, defined in [11], we can prove
that, ϕ̂e ∈ C(β) ⇒ Φ̂e ≤∗

2 Fβ . However, the converse is false because the history
of requesting budget from β does matter. Thus, Fβ1 = Fβ2 does not imply that
C(β1) = C(β2), which means that the budget provided by β in the limit may
not be useful for the computation. This causes the major difference between
complexity classes defined by T2TB and type-2 functionals. However, we may
want to have a certain computable operation on β’s to force the budget in the
limit to be used earlier during the computation; in such a way all computations
with complexity bounded by Fβ can be finished. We argue that such an effective
operation is impossible. We state this in the following theorem.

Theorem 8. There is no recursive operator Θ : T2TB → T2TB such that, for
any β ∈ T2TB and ϕ̂e : T ×N → N, Φ̂e(f, x) ≤ Fβ(f, x) ⇔ ϕ̂e,Θ(β)(f, x) ⇓ .

We know that not every limit functional corresponds to a recursive functional
that is total on recursive functions [15]. It is clear that if β is locking-detectable,
then Fβ is computable. Thus, there is a β ∈ T2TB such that Fβ is total but not
computable. We obtain the following corollary.

Corollary 1. There is β ∈ T2TB that is not locking detectable.

Locking Detectable Type-2 Time Bounds: Locking detectability probably is the
most useful property we want to have in our proofs. For example, the proof
of Theorem 3 makes such assumption. We argue that making this seemingly
strong assumption in fact does not lose the generality of our proofs under both
cost models. We say that β and α are equivalent if the two determine the same
complexity class, i.e., C(β) = C(α). Our approach is to construct an effective
operator that converts any β ∈ T2TB to an equivalent locking detectable one.
We state the theorem as follows.

Theorem 9. There is an effective operator ΘL : T2TB → T2TB such that,
for every β ∈ T2TB, ΘL(β) is a locking detectable type-2 time bound equivalent
to β. Moreover, if β is strong, then so is ΘL(β).

6 Conclusion and Futures

Type-2 computation to some extent is a better model for many real-world com-
putations. Just to name some: real computation, real time (interactive) compu-
tation, mass database inquiries, machine learning, Web search engine, and so
on, where we do not use all available information just as the OTM does not use
the entire knowledge of the oracle. But as a matter of fact, type-2 complexity
theory is a highly underdeveloped area mainly because a tiny difference between
computation models can easily cause manifest discrepancy in the notion of com-
putability. The situation becomes even worse when computational complexity is
concerned. Even with the OTM, a widely accepted standard for type-2 computa-
tion, the way we treat the answers returned from the oracle radically shapes the
outlook of the complexity theory at type-2. The answer-length cost is the most
common cost model assumed in the literatures. This obviously is not the only
choice (we do not read every entry returned from the Google search engine, do
we?). We thus propose a reasonable alternative model called unit cost model. We
have learned that even under the same clocking scheme, this cost model gives
us a very different type-2 complexity structure. The complexity theory is much
more fragile under the unit cost model.

There are apparently many questions yet to be answered along the line of
classical complexity theorems. For example, is there any reasonable version of
the Speedup theorem? Hierarchy theorem? What is the meaning of complete-
problems at type-2? Is the classical notion of honesty necessarily trivial at type-2?

If yes, what should it be and what problem it is meant to fix? BFF does not fit
our notion of complexity classes, but are there any intuitively feasible classes that
do? Etc, etc. All these questions should be answered and we speculate that the
clocking scheme together with our type-2 time bounds has provided an accessible
approach to explore this long missing piece of a more general complexity theory.

References

1. Manuel Blum. A machine-independent theory of the complexity of recursive func-
tions. Journal of the ACM, 14(2):322–336, 1967.

2. A. Borodin. Computational complexity and the existence of complexity gaps.
Journal of the ACM, 19(1):158–174, 1972.

3. Walter S. Brainerd and Landweber Lawrance H. Theory of Computation. John
Wiley & Sons, New York, 1974.

4. Robert L. Constable. The operator gap. Journal of the ACM, 19:175–183, 1972.
5. Robert L. Constable. Type two computational complexity. In Proceedings of the

5th ACM Symposium on the Theory of Computing, pages 108–122, 1973.
6. Stephen A. Cook. Computability and complexity of higher type functions. In Y. N.

Mpschovakis, editor, Logic from Computer Science, pages 51–72. Springer-Verlag,
1991.

7. J. Hartmanis and R. E. Stearns. On the computational complexity of algorithms.
Transitions of the American Mathematics Society, pages 285–306, May 1965.

8. Bruce M. Kapron and Stephen A. Cook. A new characterization of type 2 feasi-
bility. SIAM Journal on Computing, 25:117–132, 1996.

9. L.H. Landweber and E.R. Robertson. Recursive properties of abstract complexity
classes. ACM Symposium on the Theory of Complexity, May 1970.

10. Chung-Chih Li. Type-2 complexity theory. Ph.d. dissertation, Syracuse University,
New York, 2001.

11. Chung-Chih Li. Asymptotic behaviors of type-2 algorithms and induced baire
topologies. Proceedings of the Third International Conference on Theoretical Com-
puter Science, pages 471–484, August 2004.

12. Chung-Chih Li and James S. Royer. On type-2 complexity classes: Preliminary
report. Proceedings of the Third International Workshop on Implicit Computational
Complexity, pages 123–138, May 2001.

13. E. McCreight and A. R. Meyer. Classes of computable functions defined by bounds
on computation. Proceedings of the First ACM Symposium on the Theory of Com-
puting, pages 79–88, 1969.

14. M.O. Rabin. Degree of difficulty of computing a function and a partial ordering of
recursive sets. Technical Report 2, Hebrew University, 1960.

15. Hartley Rogers, Jr. Theory of Recursive Functions and Effective Computability.
McGraw-Hill, 1967. First paperback edition published by MIT Press in 1987.

16. James Royer and John Case. Subrecursive Programming Systems: Complexity &
Succinctness. Birkhäuser, 1994.

17. James S. Royer. Semantics vs. syntax vs. computations: Machine models of type-2
polynomial-time bounded functionals. Journal of Computer and System Science,
54:424–436, 1997.

18. Anil Seth. Complexity theory of higher type functionals. Ph.d. dissertation, Uni-
versity of Bombay, 1994.

19. Paul Young. Easy construction in complexity theory: Gap and speed-up theorems.
Proceedings of the American Mathematical Society, 37(2):555–563, February 1973.

