
Union Theorems in Type-2 Computation

Chung-Chih Li

School of Information Technology
Illinois State University
Normal, IL 61790, USA

Abstract. The union theorem [12] indicates that, informally, almost all
natural complexity classes at type-1 such as PTIME, PSAPCE, EXP-
TIME, EXPSPACE, and so on, fit the precise definition of complexity
classes given by Hartmanis and Stearns in [3]. In other words, according
to the theorem, the rigorous definition of complexity classes in terms of
computable resource bounds is indeed broad enough to encompass most
natural complexity classes. However, when we lift the computation to
type-2 using oracle Turing machines, the union theorem doesn’t hold
without further strengthening some necessary conditions. In [8] we prove
a non-union theorem under a less considered cost model known as unit-
cost model. In this paper, we examine a more popular cost model known
as answer-length-cost model and give a full treatment of this powerful
theorem at type-2. We prove and disprove several nontrivial variations
of the union theorem based on our framework.

1 Introduction

Let N be the set of natural numbers. By computable we mean Turing machine
computable. A function is said to be recursive if it is total and computable.
Let R denote the set of recursive functions. We use ϕe to denote the function
computed by the eth Turing machine. Thus, when we say the computation of ϕe,
we refer it to the computation of the eth Turing machine. Let Φe denote Blum’s
complexity measure [1] associated with the computation of ϕe. Clearly, there
are infinitely many different Turing machines that compute the same function,
ϕe, with different complexity. In their seminal paper [3], Hartmanis and Stearns
give a precise definition of complexity classes as follows. For each t ∈ R, the
complexity class C(t) is defined by:

C(t) =
{

f ∈ R
∣∣∣∃e

[
ϕe = f and

∞
∀ x

(
Φe(x) ≤ t(|x|))

]}
, (1)

where
∞
∀ x is understood as “for all but finitely many” and |x| is the length

of the bit representation of x ∈ N. Despite the fact that the definition in (1)
has provided a solid foundation for the study of complexity theory, we prefer
to characterize computational complexity classes according to the properties of
the resources bounds, not just to name a class by a single function t as shown
in (1). For example, PTIME is a complexity class in which every problem can

be solved by some Turing machine within a number of steps bounded by some
polynomial. In other words, “being polynomial” is the property required for the
time-bounds for all problems in PTIME. Therefore, we define,

PTIME =
{
f

∣∣ f ∈ DTIME(p) and p is a polynomial
}

,

where DTIME(p) follows the definition in (1). Thus, we could better understand
PTIME as follows: PTIME =

⋃
k∈N DTIME(nk). Clearly, this union gives us a

more intuitive idea about what PTIME is. However, it is not at all obvious that
PTIME is indeed a complexity class under the formal definition in (1). Is there a
recursive function that determines exactly the same complexity class, PTIME?
The same question can be asked elsewhere, e.g., the big-O notation in algorithm
analysis, which can be understood as O(f) =

⋃
k∈N DTIME(k · f). Is O(f)

a rigorously defined complexity class? The powerful union theorem provides a
positive answer to this kind of questions we just asked. The theorem is proven
by McCreight and Meyer [12], which is the first theorem in complexity theory
proven by using a priority argument with finite injuries.

Theorem 1 (The Union Theorem [12]). For any sequence of recursive func-
tions f0, f1, f2, . . . such that, λi, x.fi(x) is recursive and, for all i, x ∈ N, fi(x) ≤
fi+1(x), there is a recursive function g such that C(g) =

⋃
i∈N

C(fi). ¥

According to the union theorem, there is g ∈ R such that DTIME(g) = PTIME.
Likewise, we can apply the theorem to O(f), PSPACE, EXPTIME, etc. and
claim that they are indeed complexity classes. Clearly, not any arbitrary col-
lection of resource bounds satisfied the two conditions (i) and (ii) in the union
theorem. For example, there is no such uniformly effective enumeration that
can cover all computable bounds. Thus, we cannot use the union theorem to
argue that the class of recursive functions is a complexity class. In fact, Blum [1]
proves that given any t ∈ R, there always exists a recursive function g such that,
g 6∈ DTIME(t). The simplicity of the two premises required in the union theo-
rem above allows us to apply the theorem to most natural complexity classes.
However, we shall argue that we cannot expect the same simplicity at type-2.

The most widely studied type-2 “complexity class” is BFF2 (Basic Feasible
Functional at type-2). With Cook and Kapron’s second-order polynomials [2,
4, 5], BFF2 seems to be a natural type-2 analog of PTIME. Is BFF2 a type-2
complexity class under some notion similar to (1)? Unfortunately, since there is
no generally accepted machine model for type-2 complexity theory, we are not
able to answer this question without a reasonable and workable framework to
begin with. The framework must include the selection of computing formalism
(i.e., an abstract machine such as the oracle Turing machine), the cost model
for such machines, type-2 asymptotical notations, type-2 complexity measures,
time bounds and a clocking scheme, and a precise definition of type-2 complexity
classes. In the following section we shall give necessary terminology and notation
in order to describe our union theorems at type-2. Details about our framework
and concerns are discussed in [7–11].

2

2 Necessary Background for Type-2 Complexity Classes

We will try to keep our notation minimal due to the space constraints. Check
[6] for A complete definitions of our notations and proofs. Let F and T denote
the set of finite functions and total functions, respectively, over N. With a fixed
coding method for F , we can assume that F ⊂ N and treat any finite function as
a natural number. Let σ ∈ F . We use σ ⊂ f to denote that f is an extension of σ.
In [8] we define T2TB (Type-2 Time Bounds) as a class of functions to be used
as time bounds for clocking OTM (Oracle Turing Machines). OTM is considered
as our formal computing device for type-2 computation. For convenience, we
repeat the definition of T2TB in the following.

Definition 1 (Type-2 Time Bounds) Let β : F ×N → N. We say that:

1. β is nontrivial, if for every (σ, a) ∈ F ×N, β(σ, a) ≥ |a|+ 1;
2. β is bounded, if for every (f, x) ∈ T × N, σ ∈ F , and σ ⊂ f, we have

β(σ, x) ≤ limτ→f β(τ, x);
3. β is convergent, if for every (f, a) ∈ T ×N, there exists σ ∈ F with σ ⊂ f

such that, for all τ with σ ⊆ τ , we have β(σ, a) = β(τ, a); We use β(σ, a) ↓
to denote that β converges at (σ, a).

4. β is F-monotone, if for every a ∈ N and σ, τ ∈ F with σ ⊆ τ , we have
β(σ, a) ≤ β(τ, a).

If β is computable, nontrivial, bounded, and convergent, we say that β is a type-2
time bound. Moreover, if β is F-monotone, we say that β is strong. ¥

With an appropriate clocking scheme, a precise notion of type-2 complex-
ity classes can be given. Recall from the classical complexity theory, the con-
structibility property imposed on resource bounds guarantees a basic hierarchy
among classes (see [13], pages 68, 82-85). Intuitively, a time constructible func-
tion is an efficiently computable function that is large enough to be used as a
time bound for some Turing machines to operate. The classical definition of con-
structibility is rather intuitive and straightforward. This, however, is not the case
at type-2. Much of the difficulty is caused by the cost of making oracle queries
and reading the answers returned from the oracle. In other words, making queries
and taking answers may use up the resource granted by the resource bound. Note
that, at type-1, the union theorem has no concern about constructibility. But
at type-2, without a reasonable notion of constructibility, we can use a trivial
counterexample to disprove the union theorem. Moreover, under the unit-cost
OTM model, a rather strong non-union theorem can be proven (Theorem 5 in
[8]) where the OTM is not required to read every bit of the oracle answers. In
this paper, we will emphasize on the answer-length-cost model, which is a cost
model that requires the OTM to read every bit of the answer returned from the
OTM. However, we have to distinguish the two models in some definitions and
theorems. If it is necessary, we use OTMa (Ma

e) and OTMu (Mu
e) to denote

the OTM (with index e) under answer-length-cost model and unit-cost model,
respectively. Similarly, for a result obtained based on a certain cost model, we
use an “a” or “u” in superscription to indicate the concerned model.

3

In the following discussion, we will give some notions that are similar to the
classical notion of time constructibility. However, we hesitate to consider any
of these notions a type-2 analog of time-constructibility because at the present
moment it is not clear how do these notions affect the time-hierarchy at type-2;
they just serve the purpose of obtaining a reasonable union theorem at type-2.
We first rule out those type-2 time bounds that are too small for any OTM to
make queries. To successfully query f(q), an OTMu needs at least |q|+1 steps to
place q onto the query tape, whereas an OTMa needs another |f(q)|+1 steps to
read the answer, f(q). Let ‖dom(σ)‖ =

∑
i∈dom(σ)(|i|+1). Therefore, ‖dom(σ)‖

is the minimum number of steps an OTMu needs to query the entire domain
of σ. We abuse the notation by ‖σ‖ =

∑
i∈dom(σ)

(|i| + |σ(i)| + 2). Thus, ‖σ‖
is the minimum number of steps for an OTMa to query the entire domain of σ
and read their answers. Let Mu

e,β denote the machine obtained from clocking Mu
e

with β ∈ T2TB, and let ϕu
e,β be the functional computed by Mu

e,β (same as Mu
e,β

and ϕu
e,β). Moreover, let ϕu

e,β(f, x) ⇓ denote that the computation of Mu
e,β(f, x)

terminates and the value is the same as ϕu
e (f, x). In other words, ϕu

e,β(f, x) ⇓
means Mu

e (f, x) can finish its computation under β.

Definition 2 Let β ∈ T2TB and (σ, a) ∈ F ×N.

1. We say that (σ, a) is β-queriable, if there is Mu
e,β, such that on every

(f, a) ∈ T × N with σ ⊂ f , Mu
e,β can successfully query dom(σ) in some

order. We say that (σ, a) is β-queriable witnessed by OTMu Mu
e .

2. We say that (σ, a) is β-checkable, if there is Mu
e,β, such that, on every

(f, x) ∈ T ×N, ϕu
e,β(f, x) ⇓, and

ϕu
e,β(f, x) =

{
1 if σ ⊂ f and x = a;
0 otherwise.

We say that (σ, a) is β-checkable witnessed by OTMu Mu
e . ¥

Since every β ∈ T2TB must be convergent, it is clear that that not every
(σ, x) ∈ F ×N is β-checkable or β-queriable. Suppose that (σ, a) is β-queriable
witnessed by Mu

e . Although Mu
e,β can gain budget by simply querying dom(σ),

the budget however is based on information of σ. Thus, not for every τ ∈ F
with dom(σ) = dom(τ), (τ, a) is also β-queriable witnessed by some OTMu. For
a β-queriable (σ, a), β will provide enough budget for an OTMu to print out
dom(σ) in some order, but may not be enough for any OTMa to do the same. If
(σ, a) is β-checkable, then σ can be printed in some order by a β-clocked OTMa

on every (f, a) with σ ⊂ f . We further define two properties in the following
with which the time bounds are more useful for our purposes.

Definition 3 Let β ∈ T2TB.

1. We say that β is accessible if and only if there is an OTMu Mu
e such that,

all minimal locking fragments of β are β-queriable witnessed by Mu
e .

2. We say that β is useful if and only if there is an OTMu Mu
e such that, all

minimal locking fragments of β are β-checkable witnessed by Mu
e . ¥

4

For example, β(σ, a) = |a|+|σ(a)|+1 is both accessible and useful, since it allows
some OTM on input (f, a) to check value of f(0). the value. Clearly, if β is useful,
then it is also accessible. The reason we want β to be useful is as follows. Suppose
OTM Me can be computed under β. If β is useful, then we can patch e on some
finitely many (τ, a) under the same budget provided by β as long as (τ, a) is
not a locking fragment of β. We will see why we need this later. We say that β
is locking detectable if there is a computable function to decide whether β will
converge on (σ, x). A locking detectable β is not necessarily useful or accessible.
Also, if β ∈ T2TB is accessible, then β is locking detectable. One can easily
verify the following two properties: (1) For every a ∈ N, (∅, a) is β-checkable.
(2) For every (σ, a) ∈ F×N, if (σ, a) is β-checkable, then β(σ, a) ≥ ‖σ‖+ |a|+1.

Let β1 ≤ β2 denote that, for every (σ, x) ∈ F ×N, β1(σ, x) ≤ β2(σ, x). We
now define the properties of a sequence of type-2 time bounds required in the
union theorems.

Definition 4 Let 〈βi〉 denote a sequence of type-2 time bounds β0, β1, β2,

1. We say that 〈βi〉 is uniform if and only if λi, σ, x.βi(σ, x) is recursive.
2. We say that 〈βi〉 is ascending if and only if, for all i ∈ N, βi ≤ βi+1.
3. We say that 〈βi〉 is useful if and only if, for all i ∈ N, βi is useful.
4. We say that 〈βi〉 is convergent if and only if, for every (f, x) ∈ T ×N,

there is a σ ⊂ f such that, βi(σ, x) ↓ for every i ∈ N.
5. We say that 〈βi〉 is uniformly convergent if and only if, for every n ∈ N

and (σ, x) ∈ F ×N, if βn(σ, x) ↓, then for all i ∈ N, βi(σ, x) ↓.
6. We say that 〈βi〉 is strongly convergent if and only if 〈βi〉 is uniformly

convergent and there is a recursive locking detector for β0. ¥

Let 〈βi〉 be strongly convergent and let ` be a locking detector for β0. By defini-
tion, 〈βi〉 is uniformly convergent. Thus, we can use ` to detect the convergence
of the entire sequence. That is,

[`(σ, x) = 1] =⇒ ∀i ∈ N[βi(σ, x) ↓],

and, for all (f, x) ∈ T ×N, limσ→f `(σ, x) = 1.

Examples: For every i ∈ N and (σ, x) ∈ F ×N, define

αi(σ, x) =

{
σ(x) + |x|i+1 + 1 if x ∈ dom(σ);
|x|i+1 + 1 otherwise.

βi(σ, x) =

{
σ(x + i) + |x|i+1 + 1 if (x + i) ∈ dom(σ);
|x|i+1 + 1 otherwise.

One can see that 〈αi〉 and 〈βi〉 above are two sequences of type-2 time bounds.
Clearly, 〈αi〉 is uniform, ascending, and strongly convergent, while 〈βi〉 is uniform,

5

but neither ascending nor convergent. Moreover, all type-2 time bounds in 〈αi〉
and 〈βi〉 are useful. ¥

Let Fβ denote the limit functional determined by β ∈ T2TB. That is, for
every (f, x) ∈ T ×N, Fβ(f, x) = limσ→f β(σ, x).

Lemma 1. Given uniform and ascending 〈βi〉, if there exists a total continuous
functional H : T ×N → N such that, for every i ∈ N, Fβi

≤ H, then 〈βi〉 is
convergent. ¥

Given any β ∈ T2TB, define 〈βi〉 as, for each i ∈ N, let βi = iβ. It is clear
that such 〈βi〉 is a counterexample of the inverse of Lemma 1. Referring to
the discussing in [7], for any two continuous F, G : T × N → N, if the set
{(f, x) | F (f, x) > G(f, x)} is compact in T(F, G), we say that F is almost
everywhere less than G, denoted as F ≤∗

2 G. If we relax Fβi ≤ H in Lemma 1 to
Fβi ≤∗

2 H, then we have the following lemma which is stronger than the inverse
of Lemma 1 in the sense that we do not require 〈βi〉 to be convergent.

Lemma 2. For any uniform and ascending 〈βi〉, there is a total continuous
functional H : T ×N → N such that, for every i ∈ N, Fβi ≤∗

2 H. ¥

Note that the functional H in Lemma 2 is not necessarily computable unless
we can effectively determine when does each βi converge. If we can, then H is
computable since 〈βi〉 is uniform and, for every (f, x) ∈ T × N, the minimal
locking fragment (τ, x) and Fβ(x+‖τ‖)(f, x) can be effectively obtained.

3 Non-union Theorems

Let C(β) denote the type-2 complexity class determined by β ∈ T2TB [8].
Similarly, let C(〈βi〉) denote the union class

⋃
i∈N C(βi). According to Theorem

2 in [8], if 〈βi〉 is ascending, then, for every i ∈ N, C(βi) ⊆ C(βi+1). Clearly,
if 〈βi〉 is strongly convergent with a locking detector `, then each βi is a strong
type-2 time bound because each βi can share the same locking detector `. The
strong convergence of 〈βi〉 is strong property that turns out to be one of the
necessary hypotheses in our type-2 analog of the union theorem. The following
theorem indicated that BFF2 can be described by some 〈βi〉. The proof uses
some results in Cook and Kapron’s [2, 4, 5].

Theorem 1 There is a uniform and ascending 〈βi〉 such that, C(〈βi〉) = BFF2.
¥

The theorem above implies that there is a programming system for BFF2. Simi-
lar to PTIME, BFF2 can be viewed as a union of complexity classes where each
is determined by a second order polynomial. However, we will see later that
BFF2 is not a type-2 complexity class determined by any β ∈ T2TB. We first
observe that, for any 〈βi〉 such that C(〈βi〉) = BFF2, 〈βi〉 is not convergent.
This is easy to see since the depth of a second-order polynomial can be arbitrar-
ily deep. Thus, any locking fragment will not be enough for some second-order
polynomial with deeper depth to compute.

6

Just as with the type-1 theory, in general, the union of two arbitrary com-
plexity classes is not always a complexity class. We will see in the next section
that some conditions are needed in order to obtain a type-2 union theorem.

Theorem 2 (Weak Type-2 Non-union Theorem) There exist β1 ∈ T2TB
and β2 ∈ T2TB such that, ∀α ∈ T2TB,C(α) 6= C(β1) ∪ C(β2). ¥

Let Ca(β) denotes the complexity class determined by β under the answer-
length-cost model, and Cu(β) the complexity class under the unit-cost model.
In contexts where the difference between the two models is of no importance, we
then simply use C(β).

Theorem 3 (Type-2 Non-Union Theorem) There is a uniform, ascending,
useful, and convergent 〈βi〉, such that Ca(〈βi〉) is not a type-2 complexity class.

¥

These negative results (non-union theorems) help us to find and justify our
rather strong hypotheses for obtaining a type-2 union theorem. For example,
convergence is a rather strong hypothesis, but the theorem above shows that it
is not sufficient to have a union theorem. Thus, we have to further strengthen the
hypothesis by including uniform convergence. Similarly, if we drop the usefulness
in the hypotheses, then we can modify the proof of Theorem 3 and have the
following negative result.

Corollary 1 There is a uniform, ascending, and uniformly convergent 〈βi〉,
such that Ca(〈βi〉) is not a type-2 complexity class. ¥

Thus, the usefulness of 〈βi〉 should be added as a necessary condition in our
union theorem. However, it is unclear that usefulness together with uniform
convergence are sufficient to obtain a type-2 union theorem.

Conjecture 1 There is a uniform, ascending, useful, and uniformly convergent
〈βi〉, such that Ca(〈βi〉) is not a type-2 complexity class. ¥

The following two lemmas are straightforward. We omit the proof.

Lemma 3. Let 〈βi〉 be useful. If there is an α ∈ T2TB such that Ca(〈βi〉) =
Ca(α), then 〈βi〉 is convergent. ¥

Lemma 4. Let 〈βi〉 be useful. If there is an α ∈ T2TB such that Ca(〈βi〉) ⊆
Ca(α), then 〈βi〉 is convergent. ¥

If we allow 〈βi〉 to be not useful, then Lemma 3, can be disproved by constructing
a trivial 〈βi〉. For example, let Ca(β0) = Ca(β1) = · · · where each βi delays its
convergence until an inaccessible point is reached. Thus, no OTMa clocked by
any βi can query the inaccessible point. In such a way, each βi in the sequence
determines the same complexity class and hence Ca(β0) = Ca(〈βi〉) but the
convergence of 〈βi〉 breaks if we choose a different inaccessible point for each
βi to converge. Based on the discussion in this section, we have the following
theorem as our conclusion.

7

Theorem 4 There is no β ∈ T2TB such that, C(β) = BFF2. ¥

Using Lemma 4 we can further prove that, there is no β ∈ T2TB such that,
BFF2 ⊆ Ca(β). These negative non-union results imply that a straightforward
type-2 analog of the Union Theorem does not exist. In the next section we show
how to strengthen the hypotheses in order to have a type-2 Union Theorem
under answer-length-cost model.

4 Union Theorems

According to Lemma 3, the convergence of 〈βi〉 is a necessary condition for
C(〈βi〉) to be a complexity class. However, Theorem 3 states that convergence
together with uniformity, ascendancy, and usefulness are not sufficient to obtain
a union theorem. Strong convergence turns out to be one of the necessary con-
ditions as indicated in the following theorem. We use a priority argument with
finite injuries to the theorem.

Theorem 5 (Type-2 Union Theorem) Suppose that 〈βi〉 is (i) uniform, (ii)
ascending, (iii) useful, and (iv) strongly convergent. Then, there is an α ∈ T2TB
such that, Ca(α) = Ca(〈βi〉). ¥

Both uniform and strong convergence are very strong conditions in the sense
that, for every (f, x) ∈ T ×N, every βi has to refer to the same fragment of f .
At the moment, we do not see any reasonable way to get rid of this requirement
of convergence. Here we discuss an unsuccessful try. We observe that the sample
〈βi〉 constructed in the proof of the Type-2 Non-Union Theorem (Theorem 3)
is not bounded, i.e., limi→∞ Fβi(f, x) = ∞. We may ask, if 〈βi〉 is bounded by
some continuous functional, can we have a union theorem without requiring 〈βi〉
to be uniformly convergent? The next corollary gives a negative result.

Corollary 2 There exist a continuous functional F : T ×N → N and a uniform,
ascending, and useful 〈βi〉 such that, for every i ∈ N, Fβi ≤ F , and Ca(〈βi〉) is
not a type-2 complexity class. ¥

Note that if 〈βi〉 is bounded by a total continuous functional, then, by Lemma
1, 〈βi〉 is convergent but not necessarily uniformly convergent.

Recall that a strong type-2 time bound is an F-monotone one, i.e., for every
σ, τ ∈ F and a ∈ N, σ ⊆ τ ⇒ β(σ, a) ≤ β(τ, a). We say that 〈βi〉 is strong if and
only if every βi in 〈βi〉 is F-monotone. Computations clocked with such kind of
time bounds have an intuitive advantage that the budget provided by the clock
will never shrink during the courses of the computations. Thus, we may want the
type-2 time bound α constructed in the proof of the type-2 Union Theorem to
be strong. However, we are strongly skeptical about this. We have the following
conjecture.

Conjecture 2 There is a uniform, ascending, and strong 〈βi〉 such that, if there
is α ∈ T2TB such that Ca(α) = Ca(〈βi〉), then α is not strong. ¥

8

The Type-2 big-O Notation: The big-O notation is a key tool in algorithm anal-
ysis. A natural type-2 analog of the big-O notation can be defined as follows.

Definition 5 (Type-2 big-O Notation) Given β ∈ T2TB, define

O(β) =
{
ϕe

∣∣ ϕe ∈ Ca(cβ + d) for some c, d ∈ N
}

. ¥

In fact, one of our primary motivations to have a type-2 union theorem is to
examine whether O(β) is a well-defined type-2 complexity class. In our opinion,
if the conditions in the our union theorem do not rule out O(β) to be a type-2
complexity class, we should consider the conditions reasonable, no matter how
strong they are. Clearly, if the β is locking detectable, the the sequence βi defined
in O(β) is strongly convergent. Thus, by Theorem 5, we can prove the following
corollary:

Corollary 3 Let β ∈ T2TB. If β is locking detectable and useful, then there is
an α ∈ T2TB such that Ca(α) = O(β). ¥

Note that, although we have Theorem 9 in [8] asserting that there is an effective
operator ΘL such that, ΘL(β) is locking detectable and equivalent to β, but

[Ca(β) = Ca(ΘL(β))] 6⇒ [Ca(iβ + i) = Ca(iΘL(β) + i)].

On the other hand, if we define βi = ΘL(iβ + i), the strong convergence of 〈βi〉
may not hold. This is because, if i 6= j, the inaccessible points of βi and βj

are different. Thus, locking detectability of β is required in Corollary 3. We can
easily prove the following two addition corollaries.

Corollary 4 Let α, β ∈ T2TB. If α and β are locking detectable and useful,
then O(α + β) is a type-2 complexity class. ¥

The following corollary states that we can drop the less significant term in
the big-O notation. We omit the proof since it is straightforward.

Corollary 5 Let α, β ∈ T2TB. Suppose that both α and β are locking detectable
and useful. If α ≤∗ β, then O(α + β) = O(β). ¥

5 Conclusion

For decades type-2 complexity theory using a machine model remains an un-
touched territory. This paper is added to a series of our previous ones devoted
to building up this theory from scratch. As the framework becomes clearer due
to our specific clocking scheme for OTM and the precise definition of type-2
complexity classes, we decided to push the theory further by proving a union
theorem. Based on the theorem, as its type-1 counterpart, we can characterize
some intuitive complexity classes in a precise way. Unfortunately, the most fa-
miliar BFF2 fails to pass the test, i.e., it is not a type-2 complexity class under

9

our definition. This result on the one hand indicates that our framework may
not be broad enough to encompass this intuitive type-2 complexity class. On the
other hand, it may provide another legitimate reason to argue that BFF2 is not
precise enough for further investigation on a theoretical base. The hindsight of
our investigation in this paper may be that, we give a type-2 analog of the big-O
notation and, according to the union theorem we proved, we can argue that it
is a well-defined type-2 complexity class under our framework.

References

1. Manuel Blum. A machine-independent theory of the complexity of recursive func-
tions. Journal of the ACM, 14(2):322–336, 1967.

2. Stephen A. Cook and Bruce M. Kapron. Characterization of the basic feasible
functions of finite type. Proceedings of the 30th Annual IEEE Symposium on the
Foundations of Computer Science, pages 154–159, 1989.

3. J. Hartmanis and R. E. Stearns. On the computational complexity of algorithms.
Transitions of the American Mathematics Society, pages 285–306, May 1965.

4. Bruce M. Kapron. Feasible computation in higher types. Ph.d. dissertation, Uni-
versity of Toronto, 1991.

5. Bruce M. Kapron and Stephen A. Cook. A new characterization of type 2 feasi-
bility. SIAM Journal on Computing, 25:117–132, 1996.

6. Chung-Chih Li. Type-2 union theorems. http://www.itk.ilstu.edu/faculty

/chungli/mypapers/T2Unions.pdf.
7. Chung-Chih Li. Asymptotic behaviors of type-2 algorithms and induced Baire

topologies. In Proceedings of the Third International Conference on Theoretical
Computer Science, pages 471–484, Toulouse, France, August 2004.

8. Chung-Chih Li. Clocking type-2 computation in the unit cost model. In Arnold
Beckmann, Ulrich Berger, Benedikt Löwe, and John V. Tucker, editors, Proceed-
ings of Computability in Europe, CiE 2006: Logical Approaches to Computational
Barriers, CSR 7-2006, pages 182–192, Swansea, UK, 2006.

9. Chung-Chih Li. Speed-up theorems in type-2 computation. In S. Barry Cooper,
Benedikt Löwe, and Andrea Sorbi, editors, Proceedings of Computability in Europe,
CiE 2007: Computation and Logic in the Real World, pages 478–487, Siena, Italy,
June 2007. Springer, LNCS 4497.

10. Chung-Chih Li. Query-optimal oracle Turing machines for type-2 computations. In
Proceedings of Computability in Europe, CiE 2008: Logic and Theory of Algorithms,
pages 293–303, Athens, Greece, June 2008.

11. Chung-Chih Li and James S. Royer. On type-2 complexity classes: Preliminary
report. In Proceedings of the Third International Workshop on Implicit Computa-
tional Complexity, pages 123–138, Aarhus, Denmark, May 2001.

12. E. McCreight and A. R. Meyer. Classes of computable functions defined by bounds
on computation. Proceedings of the First ACM Symposium on the Theory of Com-
puting, pages 79–88, 1969.

13. Piergiorgio Odifreddi. Classical Recursion Theory, Volume II, volume 143 of Stud-
ies in Logic and the Foundations of Mathematics. Elsevier Science Publishing,
North-Holland, Amsterdam, 1999.

10

