
Author Query Form

Journal:

Article ID:

Please send your responses together with your list of corrections via web
(preferred), or send the completed form and your marked proof to:

fax: +370 5 2784 091

Dear Author,

During the preparation of your manuscript for typesetting, some questions have arisen. These are listed below.

Queries and/or remarks

Location in
article (line)

Query / remark Response

Many thanks for your assistance

Page 1 of

Akademijos 4, LT-08412 Vilnius, Lithuania

e-mail: vtexspr-corrections@vtex.lt

TOCS

9182

1/35

13/594

Please supply keywords. Keywords are desired
in this journal.

Please check.

1

Metadata of the article that will be visualized in Online First

Journal Name Theory of Computing Systems

Article Title Speed-Up Theorems in Type-2 Computations Using Oracle Turing Machines

Copyright holder Springer Science+Business Media, LLC
This will be the copyright line in the final PDF.

Corresponding Author Family name Li

 Particle

 Given Name Chung-Chih

 Suffix

 Division School of Information Technology

 Organization Illinois State University

 Address Normal, IL, 61790-5150, USA

 E-mail cli2@ilstu.edu

Schedule Received

 Revised

 Accepted

Abstract A classic result known as the speed-up theorem in machine-independent complexity
theory shows that there exist some computable functions that do not have best
programs for them (Blum in J. ACM 14(2):322–336, <CitationRef
CitationID="CR2">1967</CitationRef> and J. ACM 18(2):290–305, <CitationRef
CitationID="CR3">1971</CitationRef>). In this paper we lift this result into type-2
computations. Although the speed-up phenomenon is essentially inherited from
type-1 computations, we observe that a direct application of the original proof to our
type-2 speed-up theorem is problematic because the oracle queries can interfere with
the speed of the programs and hence the cancellation strategy used in the original
proof is no longer correct at type-2. We also argue that a type-2 analog of the operator
speed-up theorem (Meyer and Fischer in J. Symb. Log. 37:55–68, <CitationRef
CitationID="CR18">1972</CitationRef>) does not hold, which suggests that this
curious speed-up phenomenon disappears in higher-typed computations beyond
type-2. The result of this paper adds one more piece of evidence to support the
general type-2 complexity theory under the framework proposed in Li (Proceedings of
the Third International Conference on Theoretical Computer Science, pp. 471–484,
<CitationRef CitationID="CR15">2004</CitationRef> and Proceedings of
Computability in Europe: Logical Approach to Computational Barriers, pp. 182–192,
<CitationRef CitationID="CR16">2006</CitationRef>) and Li and Royer (On type-2
complexity classes: Preliminary report, pp. 123–138, <CitationRef
CitationID="CR17">2001</CitationRef>) as a reasonable setup.

Keywords ???

Footnotes

PDF-OUTPUT

A
U

T
H

O
R

’S
 P

R
O

O
F

Journal ID: 224, Article ID: 9182, Date: 2009-01-20, Proof No: 1

U
N

CO
RREC

TE
D

 P
RO

O
F

« TOCS 224 layout: Small Extended v.1.2 reference style: mathphys file: tocs9182.tex (DL) aid: 9182 doctopic: OriginalPaper class: spr-small-v1.1 v.2008/12/04 Prn:19/01/2009; 13:39 p. 1/17»

Theory Comput Syst
DOI 10.1007/s00224-009-9182-x

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

Speed-Up Theorems in Type-2 Computations Using
Oracle Turing Machines

Chung-Chih Li

© Springer Science+Business Media, LLC

Abstract A classic result known as the speed-up theorem in machine-independent
complexity theory shows that there exist some computable functions that do not
have best programs for them (Blum in J. ACM 14(2):322–336, 1967 and J. ACM
18(2):290–305, 1971). In this paper we lift this result into type-2 computations. Al-
though the speed-up phenomenon is essentially inherited from type-1 computations,
we observe that a direct application of the original proof to our type-2 speed-up the-
orem is problematic because the oracle queries can interfere with the speed of the
programs and hence the cancellation strategy used in the original proof is no longer
correct at type-2. We also argue that a type-2 analog of the operator speed-up theorem
(Meyer and Fischer in J. Symb. Log. 37:55–68, 1972) does not hold, which suggests
that this curious speed-up phenomenon disappears in higher-typed computations be-
yond type-2. The result of this paper adds one more piece of evidence to support the
general type-2 complexity theory under the framework proposed in Li (Proceedings
of the Third International Conference on Theoretical Computer Science, pp. 471–
484, 2004 and Proceedings of Computability in Europe: Logical Approach to Com-
putational Barriers, pp. 182–192, 2006) and Li and Royer (On type-2 complexity
classes: Preliminary report, pp. 123–138, 2001) as a reasonable setup.

Keywords ???

1 Introduction

Speed-up phenomena have been extensively studied by mathematicians for more than
a half century, beginning with Gödel’s work on the length of proofs [9].1 Gödel

1The original remarks were translated in [7], pp. 82–83.

C.-C. Li (�)
School of Information Technology, Illinois State University, Normal, IL 61790-5150, USA
e-mail: cli2@ilstu.edu

mailto:cli2@ilstu.edu

A
U

T
H

O
R

’S
 P

R
O

O
F

Journal ID: 224, Article ID: 9182, Date: 2009-01-20, Proof No: 1

U
N

CO
RREC

TE
D

 P
RO

O
F

« TOCS 224 layout: Small Extended v.1.2 reference style: mathphys file: tocs9182.tex (DL) aid: 9182 doctopic: OriginalPaper class: spr-small-v1.1 v.2008/12/04 Prn:19/01/2009; 13:39 p. 2/17»

Theory Comput Syst

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

pointed out that by adding some additional axiom to a system Si , we not only ob-
tain a bigger system Si+1 (i.e., there exist theorems that are provable in Si+1 using
the new axiom but not provable in Si), we also arbitrarily shorten (speed-up) the
length of infinitely many proofs in Si . In [2], Blum re-discovered the speed-up the-
orem in terms of computable functions and his complexity measures. The theorem
asserts that the best program does not always exist for some computable functions.
In other words, there is a function, such that whenever we construct a program for it,
there always exist “better” programs that run arbitrarily faster than the one we just
constructed. The relation between Gödel’s observation and Blum’s discovery was not
obvious at all, but it is clear that Blum’s work alone has played an important role in
machine independent complexity theory for the past few decades.2

In order to state the theorem precisely, we first fix some notation and convention.
Let N be the set of natural numbers. By computable we mean Turing machine com-
putable. A function is said to be recursive if it is total and computable. Let ϕe denote
the function computed by the eth Turing machine and Φe denote the cost function
associated with the eth Turing machine. In his seminal papers [2, 3], Blum postulated
two intuitive requirements for computational complexity measure in the following
axioms:

Axiom 1: ∀ e, x ∈ N [ϕe(x) ↓ ⇐⇒ Φe(x) ↓].
Axiom 2: ∀ e, x,m ∈ N Φe(x) ≤ m is decidable.

The first axiom requires that, for any ϕ-program e on any input x, if the program
converges (halts), then the cost of computing ϕe(x) also converges. The second axiom
requires that, if a finite upper bound on the resource is fixed, we then can effectively
decide if a given computation will halt within the resource bound. Almost every rea-
sonable complexity measure for type-1 computations satisfies the two axioms. For
example, time complexity clearly satisfies the two axioms. Also, we can manage
space complexity to satisfy the axioms as well. If a proposed resource measure sat-
isfies Blum’s two axioms, we say that it is a complexity measure. More precisely,
let 〈ϕi〉i∈N be an acceptable programming system [22] and 〈Φi〉i∈N be a complexity
measure associated with 〈ϕi〉i∈N. We state the original speed-up theorem as follows:

Theorem 1 (The Speed-Up Theorem [2, 3]) For any recursive function r , there exists
a recursive function f such that

(∀ i : ϕi = f) (∃j : ϕj = f) (
∞∀ x)

[
r(Φj (x)) ≤ Φi(x)

]
.

The standard asymptotic notion,
∞∀ , is read as for all but finitely many.3 We say

that the recursive function r in the theorem is a speed-up factor, and the function f

2More discussion about the relation between computational speed-up phenomena and Gödel’s speed-up
results in logic can be found in [29].
3Precisely,

∞∀ xP (x) is equivalent to ∃x0∀x (x0 ≤ x → P(x)). The negation of “for all but finitely many”

is read as “exist infinitely many” denoted by
∞∃ . In other words,

∞∃ x P (x) is equivalent to ∀x0∃x (x0 ≤
x ∧ ¬P(x)).

A
U

T
H

O
R

’S
 P

R
O

O
F

Journal ID: 224, Article ID: 9182, Date: 2009-01-20, Proof No: 1

U
N

CO
RREC

TE
D

 P
RO

O
F

« TOCS 224 layout: Small Extended v.1.2 reference style: mathphys file: tocs9182.tex (DL) aid: 9182 doctopic: OriginalPaper class: spr-small-v1.1 v.2008/12/04 Prn:19/01/2009; 13:39 p. 3/17»

Theory Comput Syst

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

is r-speedupable. The original proof of this theorem is given in [2, 3], and some nice
revisions can be found in [4, 6, 25, 29, 30]. Many variations of the speed-up theorem
have since been proven. We are interested in Meyer and Fischer’s operator speed-up
theorem [18] where the speed-up factor is strengthened by an effective operator � as
follows:

Theorem 2 (The Operator Speed-Up Theorem [18]) For any total effective opera-
tor �, there is a recursive function f such that

(∀ i : ϕi = f) (∃j : ϕj = f) (
∞∀ x) [�(Φj)(x) ≤ Φi(x)].

This Operator Speed-up theorem is a stronger theorem in two aspects. First, the
proof of the operator speed-up theorem is constructive, i.e., the speedupable function
can be uniformly constructed while Blum’s speedupable function cannot. Secondly,
the operator � takes the graph of the computation of Φj(x) but the speed of comput-
ing ϕj (x) is still out of its control and hence the speedup phenomenon remains.

Our goal in the present paper is to lift these two speed-up theorems into type-2
computations. We obtain a type-2 analog of Theorem 1. However, Theorem 2 fails
to hold in the context of type-2 computations, which suggests that there always exist
best programs in higher-typed computations beyond type-2.

In the next section, we briefly introduce the current status of type-2 complex-
ity theory and describe some necessary preliminaries. These paragraphs are perforce
brief and superficial due to space constraints. Also, since the speed-up theorem is, for
the most part, independent from the other parts of the theory, our coverage will be
limited to the topics pertinent to our results. More details can be found in [15–17].

2 Type-2 Complexity Theory & Conventions

We consider natural numbers as type-0 objects and functions over natural numbers as
type-1 objects. Type-2 objects are called functionals that take as inputs and produce
as outputs type-0 or type-1 objects. By convention, we consider objects of lower type
as special cases of higher type, and thus, type-0 ⊂ type-1 ⊂ type-2. Without loss of
generality we restrict type-2 functionals to our standard type T × N ⇀ N, where I is
the set of total functions and ⇀ means possibly partial. Note that f ∈ I may not be
computable. For n ∈ N, |n| denotes the length of the binary bit string representing n.

For type-2 computations, we use the Oracle Turing Machine (OTM) as our stan-
dard computing formalism. An OTM is a Turing machine equipped with a function
oracle. Before an OTM begins to run, the type-1 argument should be presented to the
OTM as an oracle. In addition to the standard single-taped TM, an OTM has two extra
tapes—one is for oracle queries and the other one is for the answers to the queries.
During the course of the computation, the OTM may enter a special state called the
query-state, in which the oracle will read the query that is left on the query-tape
and prepare its answer on the answer-tape for the OTM to read. Since how the ora-
cle fetches the question and provides the answer to it is not the OTM’s concern, we
charge one unit cost (i.e., one step) to the OTM for this process. Note that the oracle

A
U

T
H

O
R

’S
 P

R
O

O
F

Journal ID: 224, Article ID: 9182, Date: 2009-01-20, Proof No: 1

U
N

CO
RREC

TE
D

 P
RO

O
F

« TOCS 224 layout: Small Extended v.1.2 reference style: mathphys file: tocs9182.tex (DL) aid: 9182 doctopic: OriginalPaper class: spr-small-v1.1 v.2008/12/04 Prn:19/01/2009; 13:39 p. 4/17»

Theory Comput Syst

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

may not be computable. However, the OTM has to prepare the queries and read their
answers at its own cost. Thus, if a resource bound is provided, the OTM can’t make
an arbitrarily large oracle query, since writing the query to the query-tape will use up
its resource. We also fix a programming system 〈ϕ̂i〉i∈N associated with some com-
plexity measure 〈Φ̂i〉i∈N for OTM. By convention, we take the number of steps as
our time complexity measure, i.e., the number of times an OTM moves its read/write
heads. Also, we use M̂e to denote the OTM with index e and ϕ̂e to denote the func-
tional computed by M̂e. Following these conventions, Seth [26] adapted Hartmanis
and Stearns’s notion [10] and defined type-2 complexity classes. He proposed two
alternatives:

1. Given recursive t : N → N, let DTIME(t) denote the set of type-2 functionals
such that, for every functional F ∈ DTIME(t), F is total and there is an OTM M̂e

that computes F and, on every (f, x) ∈ I × N, M̂e halts within t (m) steps, where
m = |max({x}∪Q)| and Q is the set of all answers returned from the oracle during
the course of the computation.

2. Given computable functional H : I × N → N, let DTIME(H) denote the set of
type-2 functionals such that, for every functional F ∈ DTIME(H), F is total and
there is an OTM M̂e that computes F and, on every (f, x) ∈ I × N, M̂e halts
within H(f,x) steps.

The key idea behind Seth’s complexity classes is directly lifted from [10]. The same
machine characterization idea can also be found in other works such as Kapron and
Cook’s [11] and Royer’s [24]. In Seth’s first definition stated above, the resource
bound is determined by the maximum size of all oracle answers returned during the
computation. But the difficulty is that the set Q in the definition of DTIME(t) in
general is not computable and hence can’t be available before the computation halts,
if ever. Alternatively, we may update the bound dynamically upon each answer re-
turned from the oracle during the course of the computation. But if we do so, there is
no guarantee that a clocked OTM must be total. For example, Cook’s POTM [5] is an
OTM bounded by a polynomial in this manner but a POTM may run forever. Kapron
and Cook proposed their remedies in the context of feasible functionals and gave a
very neat characterization for the type-2 Basic Feasible Functionals (BFF) in [11],
where the so-called second-ordered polynomials are used as the resource bounds. In
[15, 16] we adapted all these ideas and extended the second-ordered polynomials to
general type-2 computable functionals. We proposed the following complexity class:
For any computable type-2 functional H ,

DTIME(H) = {F | ∃e[ϕ̂e = F and Φ̂e≤∗
2H]}. (1)

The relation, ≤∗
2, used above will be defined in Definition 3, which is crucial to our

work. Along the lines of classical complexity theory initiated by a series of seminal
papers [2, 3, 10], our previous results in [15–17] show that the complexity theory at
type-2 does not parallel its type-1 counterpart. To begin with, we defined ≤∗

2 with a
workable and reasonable type-2 analog of type-1 asymptotic notion. We equated our
notion of finitely many at type-2 to the compact sets in some Baire-like topology [1].
The difficulty of using the standard Baire topology is that the Baire topology is too
fine and hence the nonempty compact sets in it are not computable. We thus reduced

A
U

T
H

O
R

’S
 P

R
O

O
F

Journal ID: 224, Article ID: 9182, Date: 2009-01-20, Proof No: 1

U
N

CO
RREC

TE
D

 P
RO

O
F

« TOCS 224 layout: Small Extended v.1.2 reference style: mathphys file: tocs9182.tex (DL) aid: 9182 doctopic: OriginalPaper class: spr-small-v1.1 v.2008/12/04 Prn:19/01/2009; 13:39 p. 5/17»

Theory Comput Syst

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

the Baire topology into a relative one that is defined depending on the functionals
concerned. This seemingly less universal topology turns out to be the only workable
framework for type-2 complexity.

As there is no type-2 equivalent of the Church-Turing thesis, the compactness in
our definition is the key property to guarantee that our construction is computable. In
[16] we examined some alternative clocking schemes for OTM and defined a class of
limit functionals determined by some computable functions to serve as type-2 time
bounds. With these type-2 time bounds, we were able to define an explicit type-2
complexity class similar to (1) for a general type-2 complexity theory. Unlike many
other complexity theorems such as the Gap Theorem and the Union Theorem, the
speed-up theorems do not need a precise definition of complexity classes. We thus
skip the detailed definition of our explicit type-2 complexity classes in this paper.
However, the asymptotic notion is still indispensable in the speed-up theorems. We
formalize the notion in the following paragraphs.

Let F denote the set of finite domain functions over natural numbers, i.e., σ ∈ F
iff dom(σ) is finite. Given F : I × N, let F(f,x) ↓= y denote the case that F is
defined at (f, x) and its value is y. For σ ∈ F and f ∈ F ∪ I , let σ ⊂ f denote the
case that f is an extension of σ . Two important properties of computable functionals
are compactness and monotonicity defined as follows. For any F : I × N, we say that
F is

• compact iff ∀(f, x) ∈ (N ⇀ N) × N ∃σ ∈ F [F(f,x) = F(σ,x)];
• monotone iff ∀(σ, x) ∈ F × N [F(σ,x) ↓ ⇒ ∀τ ⊇ σ(F (τ, x) ↓ = F(σ,x))].
Using the theorem due to Uspenskii and Nerode [19, 28], we know that a functional
F is continuous if and only if F is compact and monotone. Note that a continuous
function may not be computable, but a computable function must be continuous due
to the finite computation requirement. This can be described in terms of locking frag-
ments defined as follows.

Definition 1 Let F : I × N and (σ, x) ∈ F × N. We say that (σ, x) is a locking
fragment of F if and only if

∃y ∈ N ∀f ∈ I [σ ⊂ f ⇒ F(f,x) ↓= y].

Also, we say that (σ, x) is a minimal locking fragment of F if (σ, x) is a locking
fragment of F and, for every τ ∈ F with τ ⊂ σ , (τ, x) is not a locking fragment
of F . Clearly, if F is total and computable, then for every (f, x) ∈ I × N, there must
exist a unique σ ∈ F with σ ⊂ f such that (σ, x) is a minimal locking fragment
of F . It is also clear that, in general, whether or not (σ, x) is a minimal locking
fragment of F cannot be effectively decided. For any σ ∈ F , let ((σ)) be the set
of total extensions of σ , i.e., ((σ)) = {f ∈ I | σ ⊂ f }. Also, if (σ, x) ∈ F × N, let
((σ, x)) = {(f, x) | f ∈ ((σ))}.

We observe that, ((σ1))∩ ((σ2)) = ((σ1 ∪σ2)) if σ1 and σ2 are consistent; otherwise,
((σ1)) ∩ ((σ2)) = ∅. The union operation ((σ1)) ∪ ((σ2)) is conventional. Given any
f,g ∈ T , it is clear that, if f �= g, then there exist σ ⊂ f, τ ⊂ g, and k ∈ dom(σ) ∩
dom(τ) such that σ(k) �= τ(k). Instead of taking every ((σ, x)) with σ ∈ F as the

A
U

T
H

O
R

’S
 P

R
O

O
F

Journal ID: 224, Article ID: 9182, Date: 2009-01-20, Proof No: 1

U
N

CO
RREC

TE
D

 P
RO

O
F

« TOCS 224 layout: Small Extended v.1.2 reference style: mathphys file: tocs9182.tex (DL) aid: 9182 doctopic: OriginalPaper class: spr-small-v1.1 v.2008/12/04 Prn:19/01/2009; 13:39 p. 6/17»

Theory Comput Syst

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

basic open set,4 we consider only those that are related to the concerned functionals
as follows.

Definition 2 Given any continuous functionals, F1 and F2, let T(F1,F2) denote the
topology induced from T × N by F1 and F2, where the basic open sets are defined
as follows: ((σ, a)) is a basic open set of T(F1,F2) if and only if, for some (f, a) ∈
I × N, (σ1, a) and (σ2, a) are the minimal locking fragments of F1 and F2, respec-
tively, and ((σ, a)) = ((σ1, a)) ∩ ((σ2, a)).

Note that, in the definition above, since ((σ, a)) = ((σ1, a)) ∩ ((σ2, a)) =
((σ1 ∪ σ2, a)) we have that if ((σ, a)) is a basic open set of T(F1,F2), then (σ, a)

must be a locking fragment of both F1 and F2. Let X[F1≤F2] ⊆ I × N denote the
set {(f, a) | F1(f, a) ≤ F2(f, a)}. X[F1>F2] is simply the complement of X[F1≤F2]
called the exception set of F1 ≤ F2. Now, we are in a position to define our type-2
almost-everywhere relation.

Definition 3 Let F1,F2 : I × N be continuous. Define

F1≤∗
2F2 if and only if X[F1≤F2] is co-compact in T(F1,F2).

Using the same idea of compactness in Definition 3, two modified quantifiers, for
all but finitely many and exist infinitely many, can be understood in type-2 context

as follows: For continuous functionals F,G : I × N, we have
∞∀2(f, x) [F(f,x) ≤

G(f,x)] if and only if {(f, x) | F(f,x) ≤ G(f,x)} is compact in T(F,G). Similarly,

we say that
∞∃ 2(f, x)[F(f,x) ≤ G(f,x)] if and only if {(f, x) | F(f,x) ≤ G(f,x)}

is not compact in T(F,G). One can verify that

F≤∗
2G ⇐⇒ ∞∀2(f, x)[F(f,x) ≤ G(f,x)] ⇐⇒ ¬∞∃ 2(f, x)[F(f, x) > G(f,x)].

When the concerned functionals F and G are clear from the context, we simply

read
∞∀2(f, x) as “for all (f, x) except those in a compact set such that . . .”, and

∞∃ 2(f, x) as “there exists a noncompact set such that, for every (f, x) in the set . . .”,

where compact is understood as T(F,G)-compact. Unfortunately,
∞∀2 and

∞∃ 2 can’t
be defined in a general form because there is no workable general topology to define
compactness for type-2 complexity. A detailed discussion regarding this concern can
be found in [15].

3 Lifting Speed-Up Theorems to Type-2

Since type-1 computations are just a special case of type-2 computations, the speedu-
pable function constructed for the original speed-up theorem can be seen as a type-2

4This will form the product topology T × N, where T is the Baire topology and N the discrete topology
on N.

A
U

T
H

O
R

’S
 P

R
O

O
F

Journal ID: 224, Article ID: 9182, Date: 2009-01-20, Proof No: 1

U
N

CO
RREC

TE
D

 P
RO

O
F

« TOCS 224 layout: Small Extended v.1.2 reference style: mathphys file: tocs9182.tex (DL) aid: 9182 doctopic: OriginalPaper class: spr-small-v1.1 v.2008/12/04 Prn:19/01/2009; 13:39 p. 7/17»

Theory Comput Syst

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

functional that just does not make any oracle queries. In other words, as long as the
concerned complexity measure satisfies Blum’s two axioms, the proof of the origi-
nal speed-up theorem should remain valid at type-2. Clearly, our standard complex-
ity measure 〈Φ̂i〉, the number of steps the OTM performs, does satisfy Blum’s two
axioms. However, we observe that oracle queries in type-2 computations have intro-
duced some difficulties when we attempt a direct translation of the original proof.
Recall that the original construction of the speedupable function is based on the can-
cellation on some programs when their run times fall into certain ranges. When we
directly lift the construction to type-2, we note that there are cases in which the or-
acle queries may be used to slow down or speed up the computation in such a way
the programs can escape from being cancelled. Note that the proofs of the Union
Theorem and Gap Theorem do not rely on cancellation but directly construct time
bounds and let the definition of the complexity class take care of the rest. Unfortu-
nately, one can easily show that there are functionals that always make unnecessary
oracle queries that do not affect the concerned topology but do affect the running time
of the computation. Consider functional F : I × N defined by,

F(f,x) =
{

f (0) + 1 if ϕx(x) ↓ in f (0) steps;

0 otherwise.
(2)

Clearly, F is computable and total. Fix any a such that, ϕa(a) ↑. Then, on in-
put (f, a), the value of f (0) only affects the speed of computing F(f,a). Thus,
F(f,a) = 0 for any f ∈ I , and hence (∅, a) is the minimal locking fragment of F

on (f, a). That means any queries made during the computation of F on (f, a) are
unnecessary in the sense that whatever answer the oracle returns, the result of the
computation will not be altered. Thus, if there were an OTM that would not make
any unnecessary queries for F , one could modify such OTM to solve the halting
problem as follows: Fix a computable f . For any a ∈ N, during the computation of
F on (f, a), if the OTM enters the query-state, then it outputs 1 and stops; if the
OTM never enters the query-sate, then it will eventually stop and output 0. Thus,
if our procedure above outputs 1, that means ϕa(a) ↓; otherwise ϕa(a) ↑, which is
impossible.

However, the answer to the query at f (0) does affect the time for the machine
to halt. The smaller f (0) is, the sooner the computation halts. In fact, it is easy to
construct a computable functional that makes unnecessary queries on all inputs, and
moreover, the number of unnecessary queries can be arbitrarily large. Such unnec-
essary but speed-affecting queries are the problem we must get around in lifting the
speed-up theorems into type-2.

It is clear that our ϕ̂-programming system for OTM can be used to code the en-
tire class of type-1 computable functions. Thus, the speedable function constructed
in the original speed-up theorem can be coded in our ϕ̂-programming system. To that
speedupable function, any queries made during the course of the computation are
unnecessary. However, as we have seen, unnecessary queries may affect the compu-
tation time. Therefore, we cannot simply cancel those ϕ̂-programs that make oracle
queries. Moreover, if we intuitively enumerate all possible queries in our construc-
tion, we face another difficulty in trying to make our speedupable functional total,

A
U

T
H

O
R

’S
 P

R
O

O
F

Journal ID: 224, Article ID: 9182, Date: 2009-01-20, Proof No: 1

U
N

CO
RREC

TE
D

 P
RO

O
F

« TOCS 224 layout: Small Extended v.1.2 reference style: mathphys file: tocs9182.tex (DL) aid: 9182 doctopic: OriginalPaper class: spr-small-v1.1 v.2008/12/04 Prn:19/01/2009; 13:39 p. 8/17»

Theory Comput Syst

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

because we cannot decide whether a query is necessary or not; thus, our construction
will tend to be fooled by infinitely many unnecessary queries and fail to converge.
We will see that our notion of ≤∗

2 defined by Definition 3 based on the compactness
of the relative topologies (Definition 2) can resolve this problem.

4 Type-2 Speed-Up Theorems

Type-2 speed-up theorems vary with the nature of the speed-up factors that can be
either type-1 or type-2. For type-3 speed-up factors, the theorem can be considered
as a type-2 analog of the operator speed-up theorem, and we will argue that there
is no such theorem. From Theorem 2 (the operator speed-up theorem) we immedi-
ately have the following corollary, in which we replace the operator � : I → I by a
functional R : I × N.

Corollary 1 For any computable functional R : I × N, there exists a recursive func-
tion f such that,

∀ i : ϕi = f ∃j : ϕj = f
∞∀ x [R(Φj , x) ≤ Φi(x)].

However, this corollary is of no interest. Our goal is to construct a type-2 speedu-
pable functional using our programming system 〈ϕ̂i〉i∈N for OTM. We are interested
in the following formulation:

Theorem 3 For any recursive function r : N → N, there exists a computable func-
tional Fr : I × N such that,

∀ i : ϕ̂i = Fr ∃j : ϕ̂j = Fr [r ◦ Φ̂j≤∗
2Φ̂i].

Theorem 3 is obtained by lifting Theorem 1 into type-2 computations. We observe
that Fr = ϕ̂i = ϕ̂j . By Definition 3, the relative topology for the type-2 relation,
r ◦ Φ̂j≤∗

2Φ̂i , is

T(r ◦ Φ̂j , Φ̂i) = T(r ◦ ϕ̂j , ϕ̂j) = T(ϕ̂j) = T(ϕ̂i) = T(Fr).

Thus, if we construct Fr with (∅, x) as its minimal locking fragment for every x ∈ N,
then the relative topology for ≤∗

2 in the theorem is the coarsest one, i.e., the topology
with basic open sets: ((∅,0)), ((∅,1)), Our idea is that: given any S ⊂ T × N
with S being noncompact in the topology T(Fr), then the type-0 component of the
elements in S must have infinitely many different values. If a ϕ̂-program i needs to
be canceled, we will have infinitely many chances to do so on some type-0 inputs.
We can therefore ignore the effects of the type-1 input in the computation. In other
words, it is not necessary to introduce another parameter for the type-1 argument
when defining the cancellation sets.

This wishful thinking, however, is problematic in the corresponding type-2
pseudo-speed-up theorem, which is the required lemma in proving the speed-up
theorem. Because, for every ϕ̂-program i for Fr , its pseudo speed-up version,

A
U

T
H

O
R

’S
 P

R
O

O
F

Journal ID: 224, Article ID: 9182, Date: 2009-01-20, Proof No: 1

U
N

CO
RREC

TE
D

 P
RO

O
F

« TOCS 224 layout: Small Extended v.1.2 reference style: mathphys file: tocs9182.tex (DL) aid: 9182 doctopic: OriginalPaper class: spr-small-v1.1 v.2008/12/04 Prn:19/01/2009; 13:39 p. 9/17»

Theory Comput Syst

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

ϕ̂-program j , does not exactly compute ϕ̂i on some finitely many type-0 inputs, and
hence ϕ̂i and ϕ̂j may define two different topologies. Thus, if we ignore the effect of
the type-1 argument, the almost everywhere relation r ◦ Φ̂j≤∗

2Φ̂i may fail in topol-
ogy T(ϕ̂i , ϕ̂j). To fix this problem, we introduce a weaker type-2 pseudo-speed-up
theorem, in which compactness is not considered. The theorem is weaker in a sense
that we do not use the type-2 almost everywhere relation. Nevertheless, this weaker
type-2 pseudo-speed-up theorem will be sufficient for our proof of Theorem 3.

Theorem 4 (Type-2 Pseudo-Speed-up Theorem) For any recursive function func-
tion r : N → N, there exists a computable functional Fr : I × N such that, for every
ϕ̂-program i for Fr , there is another ϕ̂-program j such that,

∞∀ x ∈ N ∀ f ∈ T [(ϕ̂j (f, x) = Fr(f, x)) ∧ (Φ̂i(f, x) > r ◦ Φ̂j (f, x))].
To keep our discussion focused, we shall put detailed proof of this pseudo-speed-

up theorem in the Appendix. With this type-2 pseudo-speed-up theorem, we are able
to prove Theorem 3.

Proof of Theorem 3 Let f0 = λx.0. According to the construction of ϕ̂e in Theo-
rem 4, for every (f, x) ∈ T × N, ϕ̂e(0, f, x) = ϕ̂e(0, f0, x). It follows that (∅, x) is
the minimal locking fragment of ϕ̂s(e,0) on every (f, x) ∈ T × N. Let ϕ̂i = ϕ̂s(e,0)

and j = s(e, i + 1). Note that ϕ̂i =∗
2 ϕ̂j and r ◦ Φ̂j≤∗

2Φ̂i does not hold in general
because ((∅, x)) may not be a basic open set for some x. Consider the following ex-
ception set:

E = {
(f, x) | ϕ̂i (f, x) �= ϕ̂j (f, x)

}
.

Although E may not be compact in topology T(ϕ̂i , ϕ̂j), {x|(f, x) ∈ E} must be finite.
Thus, we can construct a patched ϕ̂-program j ′ such that the program will search a
look-up table if the type-0 argument is in {x|(f, x) ∈ E}. In such a way, the type-1
input will not affect the result, and hence, the minimal locking fragment becomes
(∅, x). On the other hand, if type-0 argument x /∈ {x|(f, x) ∈ E}, then ϕ̂-program j ′
starts running ϕ̂-program j . Similarly, consider

E′ = {
(f, x) | r ◦ Φ̂j (f, x) > Φ̂i(f, x)

}
.

Set {x|(f, x) ∈ E′} is finite. Also, consider the patched ϕ̂-program, j ′. Define

E′′ = {
(f, x) | r ◦ Φ̂j ′(f, x) > Φ̂i(f, x)

}
,

so that {x|(f, x) ∈ E′′} is finite. Therefore, E′′ is compact in T(ϕ̂i , ϕ̂j ′), because
ϕ̂i = ϕ̂j ′ and, for every x ∈ N, (∅, x) is the only basic open set in T(ϕ̂i , ϕ̂j ′).

Finally, we shall discuss the case that there may exist some best ϕ̂-program for
ϕ̂s(e,0) using some unnecessary queries to escape from being canceled. This is possi-
ble because we replace the actual type-1 input by f0 for every ϕ̂-program, and hence
we do not know the program’s behavior on actual f ∈ I . Clearly, by Claim 6 in
the proof of Theorem 4, this problem can be ignored, because any program that will
make any query on some inputs does not compute our speedupable functional. This
completes the proof of Theorem 3. �

A
U

T
H

O
R

’S
 P

R
O

O
F

Journal ID: 224, Article ID: 9182, Date: 2009-01-20, Proof No: 1

U
N

CO
RREC

TE
D

 P
RO

O
F

« TOCS 224 layout: Small Extended v.1.2 reference style: mathphys file: tocs9182.tex (DL) aid: 9182 doctopic: OriginalPaper class: spr-small-v1.1 v.2008/12/04 Prn:19/01/2009; 13:39 p. 10/17»

Theory Comput Syst

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

5 Type-2 Operator Anti-Speed-Up Theorem

In the previous section we have proven a type-2 speed-up theorem. The speed-up fac-
tor in Theorem 3 is a type-1 function and the proof is adapted from the proof for the
original speed-up theorem. In this section we consider a type-2 analog of the operator
speed-up theorem by lifting the operator in Theorem 2 into a higher typed operator
that takes functionals as its input. In other words, we will try to explore a speed-up
phenomenon when the speed-up factor is type-3. Clearly, a proof of such a theorem
needs a general type-2 s-m-n theorem and a general type-2 recursion theorem, but
such two theorems require a type-2 Church-Turing thesis, which we don’t have. In-
stead, we shall argue that the type-2 analog of the operator speed-up theorem does
not exist.

By “an effective type-2 operator” we mean a computable type-3 functional [13] of
type (I ×N) → (I ×N) with inputs restricted to computable total type-2 functionals.
Thus, we can think of an effective type-2 operator as a ϕ̂-program that takes a total
ϕ̂-program as its input and outputs another total ϕ̂-program. Our next theorem asserts
that there is an effective type-2 operator θ̂ such that, for every total ϕ̂-program e, there
is no θ̂ -speed-up version for e. In other words, the θ̂ -best programs always exist. Our
theorem is stronger than a direct negation of the operator speed-up theorem in the
sense that we claim that every ϕ̂-program is a θ̂ -best ϕ̂-program.

Theorem 5 (Type-2 Operator Anti-Speed-Up Theorem) There is a type-2 effective
operator θ̂ : (I ×N) → (I ×N) such that, for every computable functional, F : I ×N,
we have

∀i : ϕ̂i = F ∀j : ϕ̂j = F
∞∃ 2(f, x) [θ̂ (Φ̂j)(f, x) > Φ̂i(f, x)].

Proof Define θ̂ : (I × N) → (I × N) by

θ̂ (F)(f, x) = f (2F(f,x)+1).

Clearly, such θ̂ is a type-2 effective operator. Fix any computable F : I × N. Also,
fix a ϕ̂-program i for F . By contradiction, suppose that j is a θ̂ -speed-up version of
i, i.e., θ̂ (Φ̂j)≤∗

2Φ̂i . If so, for all but finitely many x ∈ N such that, for every f ∈ I ,
we have

�(Φ̂j)(f, x) ≤ Φ̂i(f, x).

Fix such x and f . By the definition of θ̂ and our assumption, we have

�(Φ̂j)(f, x) = f (2Φ̂j (f,x)+1) ≤ Φ̂i(f, x).

Clearly, there must be no query to f -oracle at 2Φ̂j (f,x)+1 during the course of the
computation of Φ̂j (f, x), because otherwise the cost of making such query will be
higher than Φ̂j (f, x), which is impossible. Thus, it follows that the value of f at

2Φ̂j (f,x)+1 has no effect on the value of Φ̂j (f, x). Therefore, if f (2Φ̂j (f,x)+1) is suf-
ficiently large, then θ̂ (Φ̂j)(f, x) > Φ̂i(f, x). This contradicts our assumption. �

A
U

T
H

O
R

’S
 P

R
O

O
F

Journal ID: 224, Article ID: 9182, Date: 2009-01-20, Proof No: 1

U
N

CO
RREC

TE
D

 P
RO

O
F

« TOCS 224 layout: Small Extended v.1.2 reference style: mathphys file: tocs9182.tex (DL) aid: 9182 doctopic: OriginalPaper class: spr-small-v1.1 v.2008/12/04 Prn:19/01/2009; 13:39 p. 11/17»

Theory Comput Syst

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

Corollary 2 There is a type-2 effective operator θ̂ : (I × N) → (I × N) such that,
for every computable F : I × N, we have

∃i : ϕ̂i = F ∀j : ϕ̂j = F
∞∃ 2(f, x) [θ̂ (Φ̂j)(f, x) > Φ̂i(f, x)].

Since ∀xP (x) → ∃xP (x), it is clear that Corollary 2 follows Theorem 5 imme-
diately. The corollary is of no interest but shows the direct negation of the operator
speed-up theorem.

6 Conclusions

In spite of the fact that oracle queries might interfere with the speed of an OTM,
our investigation shows that the speed-up phenomena indeed exist in type-2 compu-
tations as long as the complexity measure satisfies Blum’s two axioms. Thus, one
major significance of this paper should be seen as a piece of evidence to support the
general type-2 complexity theory under the framework proposed in [15–17], which
we consider a reasonable setup in a sense that both the familiar complexity structure
and proof techniques used in classical complexity theory are mostly preserved. On
the other hand, the phenomena disappear in higher-typed computations after type-2.
We therefore have a strong belief that our investigation has completed the study of
speed-up phenomena along the classical formulation of computational complexity,
i.e., Blum’s complexity measure. However, Blum’s complexity measure may not be
appropriate at type-2. For example, the query-complexity apparently fails to meet
Blum’s two axioms, but it is a commonly concerned resource in type-2 computations.
Thus, a new approach is needed in understanding the concept of query-optimum pro-
grams. With a clear notion of query-optimum programs, we then can further examine
the speed-up phenomena with respect to the notion of query-optimum programs. It
would be interesting to continue research along this direction.

Appendix

We start with an intermediate theorem known as “Pseudo-Speed-up Theorem.” We
customized the proofs for our needs. More original proofs can be found in any of
[2–4, 6, 25, 29, 30]. Let f and g be two functions over N. For convenience, let relation

f =∗ g denote the case that
∞∀ x [f (x) = g(x)], i.e., for all but finitely many x such

that f (x) = g(x). Similarly, let f <∗ g denote the case that
∞∀ x [f (x) < g(x)],

Theorem 6 (Pseudo-Speed-Up Theorem) Let r : N → N be recursive. There exists a
recursive function fr : N → N such that,

∀ i : ϕi = fr∃j : ϕj =∗ fr

∞∀ x [Φi(x) > r ◦ Φj(x)].

Fix any recursive function r : N → N. Let s be an s-1-1 function such that, for
all e,u, x ∈ N, ϕs(e,u)(x) = ϕe(u, x). We shall construct, by the recursion theorem,

A
U

T
H

O
R

’S
 P

R
O

O
F

Journal ID: 224, Article ID: 9182, Date: 2009-01-20, Proof No: 1

U
N

CO
RREC

TE
D

 P
RO

O
F

« TOCS 224 layout: Small Extended v.1.2 reference style: mathphys file: tocs9182.tex (DL) aid: 9182 doctopic: OriginalPaper class: spr-small-v1.1 v.2008/12/04 Prn:19/01/2009; 13:39 p. 12/17»

Theory Comput Syst

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

Fig. 1 The dependence of Cu,x on previously defined sets and run times

a ϕ-program e such that,

(a) ϕe : N × N → N,
(b) for every u ∈ N, for all but finitely many x ∈ N, ϕe(0, x) = ϕe(u, x), and
(c) for every i ∈ N, if ϕi = ϕs(e,0), then ϕi =∗ ϕs(e,i+1) and r ◦ Φs(e,i+1) <∗ Φi .

Given such a ϕ-program e, the speedupable recursive function fr is the function com-
puted by the ϕ-program s(e,0), i.e., λx.ϕe(0, x), and, for each ϕ-program i for fr ,
s(e, i + 1) is a speed-up finite variant of the ϕ-program i. The theorem is called the
“Pseudo” Speed-up theorem because s(e, i + 1) is not an exact speed-up version of
fr but just computes fr almost everywhere.

We maintain a global cancelation set Cu,x for each u,x ∈ N. The cancelation set,
Cu,x , determines the value of ϕe(u, x). Cu,x is defined recursively based on:

1. The previously defined sets: Cu,u, Cu,u+1, . . . ,Cu,x−1, and
2. The cost of computing each of ϕs(e,u+1)(x), ϕs(e,u+2)(x), . . . , ϕs(e,x)(x).

Figure 1 shows the dependence of Cu,x on these previously defined sets and run
times. Precisely, for each u,x ∈ N, ϕe(u, x) and Cu,x are defined as follows.

(a) If x ≤ u, then set Cu,x = ∅ and ϕe(u, x) = 1.
(b) If x > u, then set ϕe(u, x) = 1 + max({ϕi(x) | i ∈ Cu,x}), where

Cu,x =
{

i

∣∣
∣
∣∣
u ≤ i < x and i /∈ Cu,u ∪ Cu,u+1 ∪ · · · ∪ Cu,x−1

and Φi(x) ≤ r ◦ Φs(e,i+1)(x)

}

.

Claims

1. ϕe is total.
2. For every u,x ∈ N, Cu,x = C0,x ∩ {u,u + 1, . . . , x − 1}.
3. For every u,x1, x2 ∈ N, if x1 �= x2, then Cu,x1 �= Cu,x2 .

A
U

T
H

O
R

’S
 P

R
O

O
F

Journal ID: 224, Article ID: 9182, Date: 2009-01-20, Proof No: 1

U
N

CO
RREC

TE
D

 P
RO

O
F

« TOCS 224 layout: Small Extended v.1.2 reference style: mathphys file: tocs9182.tex (DL) aid: 9182 doctopic: OriginalPaper class: spr-small-v1.1 v.2008/12/04 Prn:19/01/2009; 13:39 p. 13/17»

Theory Comput Syst

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

4. For every u ∈ N, for all but finitely many x ∈ N, ϕe(0, x) = ϕe(u, x).
5. For every i ∈ N, if ϕi computes ϕs(e,0), then ϕi =∗ ϕs(e,i+1) and there exists n0 ∈ N

such that, for every x ≥ n0, we have Φi(x) > r ◦ Φs(e,i+1)(x).

Proofs of the Claims 1. For x ≤ u, ϕe(u, x) and Cu,x are defined to be 1 and ∅,
respectively. For x > u, Fig. 1 shows that every such point is well defined based on
some finite previously defined points and cancelation sets.

2. We prove this claim by double induction on u and x as follows.

Basis: Clearly, if x = 0, then for every u ∈ N, Cu,0 = C0,0 ∩ ∅ = ∅.
Hypothesis: Fix any n ∈ N. Assume that if x ≤ n, then for every u ∈ N, Cu,x =
C0,x ∩ {u,u + 1, . . . , x − 1}.

Inductive step: We argue that, when x = n + 1, then Cu,x = C0,x ∩
{u,u + 1, . . . , x − 1} for each u ∈ N. Without loss of generality, we can assume
that u < n + 1, for the u ≥ n + 1 case is trivial. Thus, we argue that,

∀u < n + 1 [Cu,n+1 = C0,n+1 ∩ {u,u + 1, . . . , n}].
Given i ∈ Cu,n+1, we have:

i ∈ Cu,n+1 ⇐⇒ i ∈ {u,u + 1, . . . , n},
i /∈ Cu,u ∪ Cu,u+1 ∪ · · · ∪ Cu,n, and

Φi(n + 1) ≤ r ◦ Φs(e,i+1)(n + 1)

⇐⇒ i ∈ {u,u + 1, . . . , n},
i ∈ {0,1, . . . , u,u + 1, . . . , n},
i /∈ Cu,u ∪ Cu,u+1 ∪ · · · ∪ Cu,n, and

Φi(n + 1) ≤ r ◦ Φs(e,i+1)(n + 1)

by hypothesis⇐⇒ i ∈ {u,u + 1, . . . , n},
i ∈ {0,1, . . . , u,u + 1, . . . , n},
i /∈ (C0,u ∪ C0,u+1 ∪ · · · ∪ C0,n) ∩ {u,u + 1, . . . , n − 1}, and

Φi(n + 1) ≤ r ◦ Φs(e,i+1)(n + 1)

⇐⇒ i ∈ {u,u + 1, . . . , n} and i ∈ C0,n+1

⇐⇒ i ∈ C0,n+1 ∩ {u,u + 1, . . . , n}.
3. Let x1 �= x2. From the construction of the cancelation sets, it is clear that

i ∈ Cu,x1 ⇒ i /∈ Cu,x2 and i ∈ Cu,x2 ⇒ i /∈ Cu,x1 .
4. For every u,x ∈ N, the values of ϕe(0, x) and ϕe(u, x) are determined by C0,x

and Cu,x , respectively. By Claim 2, C0,x − Cu,x ⊆ {0,1, . . . , u − 1}. Thus, only in-
dices in {0,1, . . . , u − 1} may cause the difference between C0,x and Cu,x . But, by
Claim 3, each such index will be selected at most once for some x. Thus, if x is suf-
ficiently large, all indices in {0,1, . . . , u − 1} will have been canceled and will not be
selected again, and hence C0,x = Cu,x .

A
U

T
H

O
R

’S
 P

R
O

O
F

Journal ID: 224, Article ID: 9182, Date: 2009-01-20, Proof No: 1

U
N

CO
RREC

TE
D

 P
RO

O
F

« TOCS 224 layout: Small Extended v.1.2 reference style: mathphys file: tocs9182.tex (DL) aid: 9182 doctopic: OriginalPaper class: spr-small-v1.1 v.2008/12/04 Prn:19/01/2009; 13:39 p. 14/17»

Theory Comput Syst

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

5. Suppose that ϕi = ϕs(e,0). From Claim 4, we already have ϕi =∗ ϕs(e,i+1). For
the other part of this claim, we assume, by contradiction, there are infinitely many
x such that, Φi(x) ≤ r ◦ Φs(e,i+1)(x). Then for some sufficiently large a with a ≥ i,
i will be selected into the cancelation set C0,a . Hence, ϕi(a) �= ϕs(e,0)(a). This is a
contradiction.

This completes the proof of the Pseudo-Speed-up theorem. �

To obtain the Speed-up theorem, we can patch the almost everywhere equality in
the Pseudo-Speed-up theorem by means of a finite table that stores the exact values
of the speedupable function on those exceptional points. However, the finite table
cannot be uniformly constructed, and hence the proof of the Speed-up theorem is not
constructive in this sense.5

Type-2 s-m-n and Recursion Theorems: The s-m-n theorem and the recursion theo-
rem are essential tools in the study of computable functions. Let 〈·, ·〉 : N×N → N be
a fixed pairing function (see [23], page 64), which is simply a computable bijection
between N × N and N.

After Kleene’s [12, 14], many approaches have been proposed in order to extend
the recursion theory to higher-type functionals.6 Following Kleene’s notations and
his S1–S9 of [12] (the inductive definition for the notion of higher-type computabil-
ity), we can establish an s-m-n theorem for higher-type countable functionals in the
following from:

{e}(ϕ1, . . . , ϕn,ψ1, . . . ,ψm) = {S(e,ϕ1, . . . , ϕn)}(ψ1, . . . ,ψm). (3)

The underlying machines in Kleene’s countable functionals are OTMs. Thus, at
type-2, the s-m-n theorem in our notation is the following: There is a recursive func-
tion s : N → N such that, for every f,g ∈ I, x ∈ N, we have

ϕ̂e(f, g, x) = ϕ̂
f

s(e)(g, x).

However, this does not directly help our work in the present paper. For obvious rea-
sons, we cannot fix an arbitrary type-1 function as built-in data for a type-2 func-
tional unless the type-1 function itself is computable. Thus, there is no computable
S : N × I → N such that, for every ϕ̂e : I × I × N → N, f, g ∈ I, and x ∈ N, we
have

ϕ̂S(e,f)(g, x) = ϕ̂e(f, g, x).

On the other hand, by slightly modifying the proofs of the ordinary s-m-n and
recursion theorems, we can establish restricted type-2 s-m-n and recursion theorems.
We state the following two theorems with proof omitted. The two theorems are all we
need in our construction.

5A rather comprehensive discussion about the constructibility of the proof of the Speed-up Theorem can
be found in [29].
6In Odifreddi [21], page 199, or Shoenfield [27], one can find a brief discussion about Kleene’s work on
the subject. For more details, see Normann [20] or Gandy and Hyland [8].

A
U

T
H

O
R

’S
 P

R
O

O
F

Journal ID: 224, Article ID: 9182, Date: 2009-01-20, Proof No: 1

U
N

CO
RREC

TE
D

 P
RO

O
F

« TOCS 224 layout: Small Extended v.1.2 reference style: mathphys file: tocs9182.tex (DL) aid: 9182 doctopic: OriginalPaper class: spr-small-v1.1 v.2008/12/04 Prn:19/01/2009; 13:39 p. 15/17»

Theory Comput Syst

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

Theorem 7 (Type-2 s-m-n Theorem on Type-0 Argument) There exists a recursive
function s : N × N → N such that, for every f ∈ I and e, x, y ∈ N, we have

ϕ̂s(e,x)(f, y) = ϕ̂e(f, 〈x, y〉).

Theorem 8 (Type-2 Recursion Theorem) There is a recursive function r : N → N
such that, for every f ∈ I and e, x ∈ N, we have

ϕ̂r(e)(f, x) = ϕ̂e(f, 〈r(e), x〉).

The two theorems above are key tools in what follows.

Theorem 4 (Type-2 Pseudo-Speed-Up Theorem) For any recursive function func-
tion r : N → N, there exists a computable functional Fr : I × N such that, for every
ϕ̂-program i for Fr , there is another ϕ̂-program j such that,

∞∀ x ∈ N ∀ f ∈ T [(ϕ̂j (f, x) = Fr(f, x)) ∧ (Φ̂i(f, x) > r ◦ Φ̂j (f, x))].

Fix a recursive function r : N → N. With the s-m-n and recursion theorems on
the type-0 argument introduced above, let s be an s-1-2 function such that, for every
e,u, x ∈ N and f ∈ T , ϕ̂s(e,u)(f, x) = ϕ̂e(u, f, x). We shall construct, by the recur-
sion theorem, a ϕ̂-program e that is similar to the ϕ-program in Theorem 6, such
that:

(a) ϕ̂e : N × T × N → N.
(b) For every u ∈ N, there exists n0 ∈ N such that, for every x > n0 and f ∈ I , we

have ϕ̂e(0, f, x) = ϕ̂e(u, f, x).
(c) For every i ∈ N, if ϕ̂i computes ϕ̂s(e,0), then there exists n0 ∈ N such that, if x ∈ N

with x > n0, then for every f ∈ T , ϕ̂i (f, x) = ϕ̂s(e,i+1)(f, x) and Φ̂i(f, x) >

r ◦ Φ̂s(e,i+1)(f, x).

Clearly, such ϕ̂e witnesses our Type-2 Pseudo-Speed-up Theorem. Similarly, we
maintain a global cancelation set Cu,x for each u,x ∈ N, which is defined as follows.
Let f0 = λx.0. Suppose that u,x ∈ N and f ∈ T .

(a) If x ≤ u, then let Cu,x = ∅ and ϕ̂e(u, f, x) = 1.
(b) If x > u, then define Cu,x by:

Cu,x =

⎧
⎪⎪⎨

⎪⎪⎩
i

∣∣∣∣∣
∣∣∣

u ≤ i < x and i /∈ Cu,u ∪ Cu,u+1 ∪ · · · ∪ Cu,x−1 and
[

Φ̂i(f0, x) ≤ r ◦ Φ̂s(e,i+1)(f0, x) or the OTM, M̂i,

on (f0, x), makes at least one query in i steps

]

⎫
⎪⎪⎬

⎪⎪⎭
,

and define ϕ̂e(u, f, x) by:

ϕ̂e(u, f, x) = 1 + max({ϕ̂i (f0, x) | i ∈ Cu,x}). (4)

In addition to the five claims in the proof of Theorem 6, we add one more claim to
our construction. Consider the following six claims.

A
U

T
H

O
R

’S
 P

R
O

O
F

Journal ID: 224, Article ID: 9182, Date: 2009-01-20, Proof No: 1

U
N

CO
RREC

TE
D

 P
RO

O
F

« TOCS 224 layout: Small Extended v.1.2 reference style: mathphys file: tocs9182.tex (DL) aid: 9182 doctopic: OriginalPaper class: spr-small-v1.1 v.2008/12/04 Prn:19/01/2009; 13:39 p. 16/17»

Theory Comput Syst

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

1. ϕ̂e is total on N × T × N.
2. For every u,x ∈ N, Cu,x = C0,x ∩ {u,u + 1, . . . , x − 1}.
3. For every u,x1, x2 ∈ N, if x1 �= x2, then Cu,x1 �= Cu,x2 .
4. For every u ∈ N, for all but finitely many x ∈ N, and for every f ∈ T ,

ϕ̂e(0, f, x) = ϕ̂e(u, f, x).
5. For every i ∈ N, if ϕ̂i = ϕ̂s(e,0), then there exists n0 ∈ N such that, for every

x ∈ N with x ≥ n0 and for every f ∈ T , we have ϕ̂i (f, x) = ϕ̂s(e,i+1)(f, x) and
Φ̂i(f, x) > r ◦ Φ̂s(e,i+1)(f, x).

6. If i is a ϕ̂-program for ϕ̂s(e,0), then, for all but finitely many x ∈ N and for all
f ∈ I , the OTM M̂i , on (f, x), does not make any oracle query.

For claim 1, it is clear that the extra clause

“the OTM, M̂i , on (f0, x), makes at least one query in i steps”

in defining Cu,x is recursively decidable, and hence ϕ̂e is total.
Claims 2, 3, 4, and 5 can be proven by exactly the same arguments for Theorem 6.
For Claim 6, suppose ϕ̂i = ϕ̂s(e,0) and, by contradiction, there are infinitely many

x ∈ N such that, for some f ∈ I , the OTM, M̂i , on (f, x), makes some queries to
the oracle. Let a be such x. Then, M̂i , on (f0, a), must also make some queries
to the oracle. Moreover, there are infinitely many ϕ̂-programs that behavior exactly
the same as i does. Let j be a such ϕ̂-program and sufficiently large. Thus, M̂j , on
(f0, a), will make some queries in j steps and will be selected into C0,a . Therefore,
j and i are not ϕ̂-program for ϕ̂s(e,0).

References

1. Abramsky, S., Gabbay, D.M., Maibaumeditors, T.S.E. (eds.): Handbook of Logic in Computer Sci-
ence. Oxford University Press, Oxford (1992). Background: Mathematical Structures

2. Blum, M.: A machine-independent theory of the complexity of recursive functions. J. ACM 14(2),
322–336 (1967)

3. Blum, M.: On effective procedures for speeding up algorithms. J. ACM 18(2), 290–305 (1971)
4. Calude, C.: Theories of Computational Complexity. Annals of Discrete Mathematics, vol. 35. North-

Holland/Elsevier Science Publisher, Amsterdam (1988)
5. Cook, S.A.: Computability and complexity of higher type functions. In: Logic from Computer Sci-

ence, pp. 51–72. Springer, Berlin (1991)
6. Cutland, N.: Computability: An Introduction to Recursive Function Theory. Cambridge University

Press, New York (1980)
7. Davis, M. (ed.): The Undecidable. Raven Press, New York (1965)
8. Gandy, R.O., Hyland, J.M.E.: Computable and recursively countable functions of higher type. Log.

Colloq. 76, 405–438 (1977)
9. Gödel, K.: Über die länge der beweise. Ergebnisse eines Math. Kolloq. 7, 23–24 (1936). Translation

in Davis M. (ed.): The Undecidable, pp. 82–83. Raven Press, New York (1965). “On the length of
proofs”

10. Hartmanis, J., Stearns, R.E.: On the computational complexity of algorithms. In: Transitions of the
American Mathematics Society, pp. 285–306, May (1965)

11. Kapron, B.M., Cook, S.A.: A new characterization of type 2 feasibility. SIAM J. Comput. 25, 117–132
(1996)

12. Kleene, S.C.: Recursive functionals and quantifies of finite types I. Trans. Am. Math. Soc. 91, 1–52
(1959)

13. Kleene, S.C.: Turing-machine computable functionals of finite types II. Proc. Lond. Math. Soc. 12,
245–258 (1962)

A
U

T
H

O
R

’S
 P

R
O

O
F

Journal ID: 224, Article ID: 9182, Date: 2009-01-20, Proof No: 1

U
N

CO
RREC

TE
D

 P
RO

O
F

« TOCS 224 layout: Small Extended v.1.2 reference style: mathphys file: tocs9182.tex (DL) aid: 9182 doctopic: OriginalPaper class: spr-small-v1.1 v.2008/12/04 Prn:19/01/2009; 13:39 p. 17/17»

Theory Comput Syst

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

14. Kleene, S.C.: Recursive functionals and quantifies of finite types II. Trans. Am. Math. Soc. 108, 106–
142 (1963)

15. Li, C.-C.: Asymptotic behaviors of type-2 algorithms and induced baire topologies. In: Proceedings of
the Third International Conference on Theoretical Computer Science, pp. 471–484. Toulouse, France,
August (2004)

16. Li, C.-C.: Clocking type-2 computation in the unit cost model. In: Proceedings of Computability in
Europe: Logical Approach to Computational Barriers, pp. 182–192. Swansea, UK (2006). Report#
CSR 7-2006

17. Li, C.-C., Royer, J.S.: On type-2 complexity classes: Preliminary report, pp. 123–138, May (2001)
18. Meyer, A.R., Fischer, P.C.: Computational speed-up by effective operators. J. Symb. Log. 37, 55–68

(1972)
19. Nerode, A.: General topology and partial recursive functionals. In: Talks Cornell Summ. Inst. Symb.

Log., Cornell, pp. 247–251 (1957)
20. Normann, D.: Recursive on the Countable Functionals. Lecture Notes in Mathematics, vol. 811.

Springer, New York (1980)
21. Odifreddi, P.: Classical Recursion Theory. Studies in Logic and the Foundations of Mathematics,

vol. 125. Elsevier Science/North-Holland, Amsterdam (1989)
22. Rogers, H. Jr.: Theory of Recursive Functions and Effective Computability. McGraw-Hill, New York

(1967). First paperback edition published by MIT Press (1987)
23. Rogers, H. Jr.: Theory of Recursive Functions and Effective Computability, 3rd edn. MIT, Cambridge

(1992). Original edition published by McGraw-Hill in 1967. First paperback edition published by
MIT Press in 1987

24. Royer, J.S.: Semantics vs. syntax vs. computations: Machine models of type-2 polynomial-time
bounded functionals. J. Comput. Syst. Sci. 54, 424–436 (1997)

25. Seiferas, J.I.: Machine-independent complexity theory. In: van Leeuwen, J. (ed.) Handbook of Theo-
retical Computer Science, vol. A, pp. 163–186. North-Holland/Elsevier Science, Amsterdam (1990).
MIT press for paperback edition

26. Seth, A.: Complexity theory of higher type functionals. Ph.D. dissertation, University of Bombay
(1994)

27. Shoenfield, J.R.: The mathematical works of S.C. Kleene. Bull. Symb. Log. 1(1), 9–43 (1995)
28. Uspenskii, V.A.: On countable operations (Russian). Dokl. Akad. Nauk SSSR 103, 773–776 (1955)
29. Van Emde Boas, P.: Ten years of speed-up. In: Proceedings of the Fourth Symposium Mathematical

Foundations of Computer Science. Lecture Notes in Computer Science, pp. 13–29. Springer, Berlin
(1975)

30. Wagner, K., Wechsung, G.: Computational Complexity. Mathematics and Its Applications. Reidel,
Dordrecht (1985)

	Speed-Up Theorems in Type-2 Computations Using Oracle Turing Machines
	Abstract
	Introduction
	Type-2 Complexity Theory & Conventions
	Lifting Speed-Up Theorems to Type-2
	Type-2 Speed-Up Theorems
	Type-2 Operator Anti-Speed-Up Theorem
	Conclusions
	Appendix
	Type-2 s-m-n and Recursion Theorems:

	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

