
Union Theorems in Type-2 Computation
(full version draft)

Chung-Chih Li

School of Information Technology
Illinois State University
Normal, IL 61790, USA

Abstract. The union theorem [12] indicates that, informally, almost all
natural complexity classes at type-1 such as PTIME, PSAPCE, EXP-
TIME, EXPSPACE, and so on, fit the precise definition of complexity
classes given by Hartmanis and Stearns in [3]. In other words, according
to the theorem, the rigorous definition of complexity classes in terms
of computable resource bounds is indeed broad enough to encompass
most natural complexity classes. However, when we lift the computa-
tion to type-2 using oracle Turing machines, the union theorem doesn’t
hold without further strengthening some necessary conditions. In [8] we
prove a non-union theorem under a less considered cost model known
as unit-cost model. In this paper, we emphasize on a more popular cost
model known as answer-length-cost model and give a full treatment of
this powerful theorem at type-2. We prove and disprove several nontrivial
variations of the union theorem based on our framework.

1 Introduction

Let N be the set of natural numbers. By computable we mean Turing machine
computable. A function is said to be recursive if it is total and computable.
Let R denote the set of recursive functions. We use ϕe to denote the function
computed by the eth Turing machine. Thus, when we say the computation of ϕe,
we refer it to the computation of the eth Turing machine. Let Φe denote Blum’s
complexity measure [1] associated with the computation of ϕe. Clearly, there
are infinitely many different Turing machines that compute the same function,
ϕe, with different complexity. In their seminal paper [3], Hartmanis and Stearns
give a precise definition of complexity classes as follows. For each t ∈ R, the
complexity class C(t) is defined by:

C(t) =
{

f ∈ R
∣∣∣∃e

[
ϕe = f and

∞
∀ x

(
Φe(x) ≤ t(|x|))

]}
, (1)

where
∞
∀ x is understood as “for all but finitely many” and |x| is the length

of the bit representation of x ∈ N. Despite the fact that the definition in (1)
has provided a solid foundation for the study of complexity theory, we prefer
to characterize computational complexity classes according to the properties of

the resources bounds, not just to name a class by a single function t as shown
in (1). For example, PTIME is a complexity class in which every problem can
be solved by some Turing machine within a number of steps bounded by some
polynomial. In other words, “being polynomial” is the property required for the
time-bounds for all problems in PTIME. Therefore, we define,

PTIME =
{
f

∣∣ f ∈ DTIME(p) and p is a polynomial
}

,

where DTIME(p) follows the definition in (1). Thus, we could better understand
PTIME as follows:

PTIME =
⋃

k∈N
DTIME(nk). (2)

Clearly, the union set in (2) gives us a more intuitive idea about what PTIME is.
However, it is not at all obvious that PTIME is indeed a complexity class under
the formal definition in (1). Is there a recursive function that determines exactly
the same complexity class, PTIME? The same question can be asked elsewhere,
e.g., the big-O notation in algorithm analysis, which can be understood as

O(f) =
⋃

k∈N
DTIME(k · f).

Is O(f) a rigorously defined complexity class? The powerful union theorem pro-
vides a positive answer to this kind of questions we just asked. The theorem is
proven by McCreight and Meyer [12], which is the first theorem in complexity
theory proven by using a priority argument with finite injuries.

Theorem 1 (The Union Theorem [12]). Given any sequence of recursive
functions f0, f1, f2, . . . such that,

(i) λi, x.fi(x) is recursive, and
(ii) for all i, x ∈ N, fi(x) ≤ fi+1(x),

there is a recursive function g such that C(g) =
⋃

i∈N

C(fi). ¥

According to the union theorem, there is g ∈ R such that DTIME(g) = PTIME.
Likewise, we can apply the theorem to O(f), PSPACE, EXPTIME, etc. and
claim that they are indeed complexity classes. Clearly, not any arbitrary col-
lection of resource bounds satisfied the two conditions (i) and (ii) in the union
theorem. For example, there is no such uniformly effective enumeration that
can cover all computable bounds. Thus, we cannot use the union theorem to
argue that the class of recursive functions is a complexity class. In fact, Blum [1]
proves that given any t ∈ R, there always exists a recursive function g such that,
g 6∈ DTIME(t). The simplicity of the two premises required in the union theo-
rem above allows us to apply the theorem to most natural complexity classes.
However, we shall argue that we cannot expect the same simplicity at type-2.

The most widely studied type-2 “complexity class” is BFF2 (Basic Feasible
Functional at type-2). With Cook and Kapron’s second-order polynomials [2,

2

5, 6], BFF2 seems to be a natural type-2 analog of PTIME. Is BFF2 a type-2
complexity class under some notion similar to (1)? Unfortunately, since there is
no generally accepted machine model for type-2 complexity theory, we are not
able to answer this question without a reasonable and workable framework to
begin with. The framework must include the selection of computing formalism
(i.e., an abstract machine such as the oracle Turing machine), the cost model
for such machines, type-2 asymptotical notations, type-2 complexity measures,
time bounds and a clocking scheme, and a precise definition of type-2 complexity
classes. In the following section we shall give necessary terminology and notation
in order to describe our union theorems at type-2. Details about our framework
and concerns are discussed in [7–11]. Also, detailed proofs of our theorems in
this paper are given in Appendix C for verification.

2 Necessary Background for Type-2 Complexity Classes

We will try to keep our notation minimal due to the space constraints. A com-
plete list of our notations can be found in Appendix A. Let F and T denote the
set of finite functions and total functions, respectively, over N. With a fixed cod-
ing method for F , we can assume that F ⊂ N and treat any finite function as a
natural number. Let σ ∈ F . We use σ ⊂ f to denote that f is an extension of σ.
In [8] we define T2TB (Type-2 Time Bounds) as a class of functions to be used
as time bounds for clocking OTM (Oracle Turing Machines). OTM is considered
as our formal computing device for type-2 computation1. For convenience, we
repeat the definition of T2TB in the following.

Definition 1 (Type-2 Time Bounds) Let β : F ×N → N. We say that:

1. β is nontrivial, if for every (σ, a) ∈ F ×N, β(σ, a) ≥ |a|+ 1;
2. β is bounded, if for every (f, x) ∈ T × N, σ ∈ F , and σ ⊂ f, we have

β(σ, x) ≤ limτ→f β(τ, x);
3. β is convergent, if for every (f, a) ∈ T ×N, there exists σ ∈ F with σ ⊂ f

such that, for all τ with σ ⊆ τ , we have β(σ, a) = β(τ, a); We use β(σ, a) ↓
to denote that β converges at (σ, a).

4. β is F-monotone, if for every a ∈ N and σ, τ ∈ F with σ ⊆ τ , we have
β(σ, a) ≤ β(τ, a).

If β is computable, nontrivial, bounded, and convergent, we say that β is a type-2
time bound. Moreover, if β is F-monotone, we say that β is strong. ¥

With an appropriate clocking scheme, a precise notion of type-2 complex-
ity classes can be given. Recall from the classical complexity theory, the con-
structibility property imposed on resource bounds guarantees a basic hierarchy

1 We refer the reader to Appendix B or [8] for details about OTM, a clocking scheme,
and the two cost models. More properties of T2TB are discussed in [8]. The topology
and its compact sets used in the definition of type-2 complexity classes in terms of
resource bounds can be found in [7]

3

among classes (see [13], pages 68, 82-85). Intuitively, a time constructible func-
tion is an efficiently computable function that is large enough to be used as a
time bound for some Turing machines to operate. The classical definition of con-
structibility is rather intuitive and straightforward. This, however, is not the case
at type-2. Much of the difficulty is caused by the cost of making oracle queries
and reading the answers returned from the oracle. In other words, making queries
and taking answers may used up the resource granted by the resource bound.
Note that, at type-1, the union theorem has no concern about constructibility.
But at type-2, without a reasonable notion of constructibility, we can use a triv-
ial counterexample to disprove the union theorem. Moreover, under the unit-cost
OTM model, a rather strong non-union theorem can be proven (Theorem 5 in
[8]) where the OTM is not required to read every bit of the oracle answers. In
this paper, we will emphasize on the answer-length-cost model, which is a cost
model that requires the OTM to read every bit of the answer returned from the
OTM. However, we have to distinguish the two models in some definitions and
theorems. If it is necessary, we use OTMa (Ma

e) and OTMu (Mu
e) to denote

the OTM (with index e) under answer-length-cost model and unit-cost model,
respectively. Similarly, for a result obtained based on a certain cost model, we
use an “a” or “u” in superscription to indicate the concerned model.

In the following discussion, we will give some notions that are similar to the
classical notion of time constructibility. However, we hesitate to consider any
of these notions a type-2 analog of time-constructibility because at the present
moment it is not clear how do these notions affect the time-hierarchy at type-2;
they just serve the purpose of obtaining a reasonable union theorem at type-2.
We first rule out those type-2 time bounds that are too small for any OTM to
make queries. To successfully query f(q), an OTMu needs at least |q|+1 steps to
place q onto the query tape, whereas an OTMa needs another |f(q)|+1 steps to
read the answer, f(q). Let ‖dom(σ)‖ =

∑
i∈dom(σ)

(|i|+1). Therefore, ‖dom(σ)‖
is the minimum number of steps an OTMu needs to query the entire domain
of σ. We abuse the notation by ‖σ‖ =

∑
i∈dom(σ)(|i| + |σ(i)| + 2). Thus, ‖σ‖

is the minimum number of steps for an OTMa to query the entire domain of σ
and read their answers. Let Mu

e,β denote the machine obtained from clocking Mu
e

with β ∈ T2TB, and let ϕu
e,β be the functional computed by Mu

e,β (same as Mu
e,β

and ϕu
e,β). Moreover, let ϕu

e,β(f, x) ⇓ denote that the computation of Mu
e,β(f, x)

terminates and the value is the same as ϕu
e (f, x). In other words, ϕu

e,β(f, x) ⇓
means Mu

e (f, x) can finish its computation under β.

Definition 2 Let β ∈ T2TB and (σ, a) ∈ F ×N.

1. We say that (σ, a) is β-queriable, if there is Mu
e,β, such that on every

(f, a) ∈ T × N with σ ⊂ f , Mu
e,β can successfully query dom(σ) in some

order. We say that (σ, a) is β-queriable witnessed by OTMu Mu
e .

2. We say that (σ, a) is β-checkable, if there is Mu
e,β, such that, on every

(f, x) ∈ T ×N, ϕu
e,β(f, x) ⇓, and

ϕu
e,β(f, x) =

{
1 if σ ⊂ f and x = a;
0 otherwise.

4

We say that (σ, a) is β-checkable witnessed by OTMu Mu
e . ¥

Since every β ∈ T2TB must be convergent, it is clear that that not every
(σ, x) ∈ F ×N is β-checkable or β-queriable. Suppose that (σ, a) is β-queriable
witnessed by Mu

e . Although Mu
e,β can gain budget by simply querying dom(σ),

the budget however is based on information of σ. Thus, not for every τ ∈ F
with dom(σ) = dom(τ), (τ, a) is also β-queriable witnessed by some OTMu. For
a β-queriable (σ, a), β will provide enough budget for an OTMu to print out
dom(σ) in some order, but may not be enough for any OTMa to do the same. If
(σ, a) is β-checkable, then σ can be printed in some order by a β-clocked OTMa

on every (f, a) with σ ⊂ f . We further define two properties in the following
with which the time bounds are more useful for our purposes.

Definition 3 Let β ∈ T2TB.

1. We say that β is accessible if and only if there is an OTMu Mu
e such that,

all minimal locking fragments of β are β-queriable witnessed by Mu
e .

2. We say that β is useful if and only if there is an OTMu Mu
e such that, all

minimal locking fragments of β are β-checkable witnessed by Mu
e . ¥

Clearly, if β is useful, then it is also accessible. The reason we want β to be useful
is as follows. Suppose OTM Me can be computed under β. If β is useful, then we
can patch e on some finitely many (τ, a) under the same budget provided by β as
long as (τ, a) is not a locking fragment of β. We will see why we need this later.
We say that β is locking detectable if there is a computable function to decide
whether β will converge on (σ, x). A locking detectable β is not necessarily useful
or accessible. For the inverse, we have the following lemma.

Lemma 1. If β ∈ T2TB is accessible, then β is locking detectable. ¥

One can easily verify the following properties. We omit the proofs. Note that,
the inverse of properties in 3 and 4 do not hold, because the set of the minimal
locking fragments of β may not be recursively enumerable.

Properties: Let β ∈ T2TB.

1. For every a ∈ N, (∅, a) is β-checkable.
2. For every (σ, a) ∈ F×N, if (σ, a) is β-checkable, then β(σ, a) ≥ ‖σ‖+ |a|+1.
3. If β is accessible, then for every minimal locking fragment, (σ, a), of β, we

have ∀τ ⊆ σ [β(τ, a) ≥ ‖dom(τ)‖+ |a|+ 1] .
4. If β is useful, then for every minimal locking fragment, (σ, a), of β, we have
∀τ ⊆ σ [β(τ, a) ≥ ‖τ‖+ |a|+ 1] . ¥

Let β1 ≤ β2 denote that, for every (σ, x) ∈ F ×N, β1(σ, x) ≤ β2(σ, x). Now,
we are in position to define the properties of a sequence of type-2 time bounds
required in the union theorems.

Definition 4 Let 〈βi〉 denote a sequence of type-2 time bounds β0, β1, β2,

5

1. We say that 〈βi〉 is uniform if and only if λi, σ, x.βi(σ, x) is recursive.
2. We say that 〈βi〉 is ascending if and only if, for all i ∈ N, βi ≤ βi+1.
3. We say that 〈βi〉 is useful if and only if, for all i ∈ N, βi is useful.
4. We say that 〈βi〉 is convergent if and only if, for every (f, x) ∈ T ×N,

there is a σ ⊂ f such that, βi(σ, x) ↓ for every i ∈ N.
5. We say that 〈βi〉 is uniformly convergent if and only if, for every n ∈ N

and (σ, x) ∈ F ×N, if βn(σ, x) ↓, then for all i ∈ N, βi(σ, x) ↓.
6. We say that 〈βi〉 is strongly convergent if and only if 〈βi〉 is uniformly

convergent and there is a recursive locking detector for β0. ¥

Let 〈βi〉 be strongly convergent and let ` be a locking detector for β0. By defini-
tion, 〈βi〉 is uniformly convergent. Thus, we can use ` to detect the convergence
of the entire sequence. That is,

[`(σ, x) = 1] =⇒ ∀i ∈ N[βi(σ, x) ↓],
and, for all (f, x) ∈ T ×N, limσ→f `(σ, x) = 1.

Examples: For every i ∈ N and (σ, x) ∈ F ×N, define

αi(σ, x) =

{
σ(x) + |x|i+1 + 1 if x ∈ dom(σ);
|x|i+1 + 1 otherwise.

βi(σ, x) =

{
σ(x + i) + |x|i+1 + 1 if (x + i) ∈ dom(σ);
|x|i+1 + 1 otherwise.

One can see that 〈αi〉 and 〈βi〉 above are two sequences of type-2 time bounds.
Clearly, 〈αi〉 is uniform, ascending, and strongly convergent, while 〈βi〉 is uniform,
but neither ascending nor convergent. Moreover, all type-2 time bounds in 〈αi〉
and 〈βi〉 are useful. ¥

Let Fβ denote the limit functional determined by β ∈ T2TB. That is, for
every (f, x) ∈ T ×N, Fβ(f, x) = limσ→f β(σ, x).

Lemma 2. Given uniform and ascending 〈βi〉, if there exists a total continuous
functional H : T ×N → N such that, for every i ∈ N, Fβi ≤ H, then 〈βi〉 is
convergent. ¥

Given any β ∈ T2TB, define 〈βi〉 as, for each i ∈ N, let βi = iβ. It is clear
that such 〈βi〉 is a counterexample of the inverse of Lemma 2. Referring to
the discussing in [7], for any two continuous F, G : T × N → N, if the set
{(f, x) | F (f, x) > G(f, x)} is compact in T(F, G), we say that F is almost
everywhere less than G, denoted as F ≤∗

2 G. If we relax Fβi ≤ H in Lemma 2 to
Fβi ≤∗

2 H, then we have the following lemma which is stronger than the inverse
of Lemma 2 in the sense that we do not require 〈βi〉 to be convergent.

Lemma 3. For any uniform and ascending 〈βi〉, there is a total continuous
functional H : T ×N → N such that, for every i ∈ N, Fβi ≤∗

2 H. ¥

6

Note that the functional H in Lemma 3 is not necessarily computable unless
we can effectively determine when does each βi converge. If we can, then H is
computable since 〈βi〉 is uniform and, for every (f, x) ∈ T × N, the minimal
locking fragment (τ, x) and Fβ(x+‖τ‖)(f, x) can be effectively obtained.

3 Non-union Theorems

Let C(β) denote the type-2 complexity class determined by β ∈ T2TB [8].
Similarly, let C(〈βi〉) denote the union class

⋃
i∈N C(βi). According to Theorem

2 in [8], if 〈βi〉 is ascending, then, for every i ∈ N, C(βi) ⊆ C(βi+1). Clearly,
if 〈βi〉 is strongly convergent with a locking detector `, then each βi is a strong
type-2 time bound because each βi can share the same locking detector `. The
strong convergence of 〈βi〉 is strong property that turns out to be one of the
necessary hypotheses in our type-2 analog of the union theorem. The following
theorem indicated that BFF2 can be described by some 〈βi〉. The proof uses
some results in Cook and Kapron’s [2, 5, 6].

Theorem 1 There is a uniform and ascending 〈βi〉 such that, C(〈βi〉) = BFF2.
¥

The theorem above implies that there is a programming system for BFF2. Simi-
lar to PTIME, BFF2 can be viewed as a union of complexity classes where each
is determined by a second order polynomial. However, we will see later that
BFF2 is not a type-2 complexity class determined by any β ∈ T2TB. We first
observe that, for any 〈βi〉 such that C(〈βi〉) = BFF2, 〈βi〉 is not convergent.
This is easy to see since the depth of a second-order polynomial can be arbitrar-
ily deep. Thus, any locking fragment will not be enough for some second-order
polynomial with deeper depth to compute.

Just as with the type-1 theory, in general, the union of two arbitrary com-
plexity classes is not always a complexity class. We will see in the next section
that some conditions are needed in order to obtain a type-2 union theorem.

Theorem 2 (Weak Type-2 Non-union Theorem) There exist β1 ∈ T2TB
and β2 ∈ T2TB such that, ∀α ∈ T2TB,C(α) 6= C(β1) ∪ C(β2). ¥

Let Ca(β) denotes the complexity class determined by β under the answer-
length-cost model, and Cu(β) the complexity class under the unit-cost model.
In contexts where the difference between the two models is of no importance, we
then simply use C(β).

Theorem 3 (Type-2 Non-Union Theorem) There is a uniform, ascending,
useful, and convergent 〈βi〉, such that Ca(〈βi〉) is not a type-2 complexity class.

¥

These negative results (non-union theorems) help us to find and justify our
rather strong hypotheses for obtaining a type-2 union theorem. For example,
convergence is a rather strong hypothesis, but the theorem above shows that it

7

is not sufficient to have a union theorem. Thus, we have to further strengthen the
hypothesis by including uniform convergence. Similarly, if we drop the usefulness
in the hypotheses, then we can modify the proof of Theorem 3 and have the
following negative result.

Corollary 1 There is a uniform, ascending, and uniformly convergent 〈βi〉,
such that Ca(〈βi〉) is not a type-2 complexity class. ¥

Thus, the usefulness of 〈βi〉 should be added as a necessary condition in our
union theorem. However, it is unclear that usefulness together with uniform
convergence are sufficient to obtain a type-2 union theorem.

Conjecture 1 There is a uniform, ascending, useful, and uniformly convergent
〈βi〉, such that Ca(〈βi〉) is not a type-2 complexity class. ¥

The following two lemmas are straightforward. We omit the proof.

Lemma 4. Let 〈βi〉 be useful. If there is an α ∈ T2TB such that Ca(〈βi〉) =
Ca(α), then 〈βi〉 is convergent. ¥

Lemma 5. Let 〈βi〉 be useful. If there is an α ∈ T2TB such that Ca(〈βi〉) ⊆
Ca(α), then 〈βi〉 is convergent. ¥

If we allow 〈βi〉 to be not useful, then Lemma 4, can be disproved by constructing
a trivial 〈βi〉. For example, let Ca(β0) = Ca(β1) = · · · where each βi delays its
convergence until an inaccessible point is reached. Thus, no OTMa clocked by
any βi can query the inaccessible point. In such a way, each βi in the sequence
determines the same complexity class and hence Ca(β0) = Ca(〈βi〉) but the
convergence of 〈βi〉 breaks if we choose a different inaccessible point for each
βi to converge. Based on the discussion in this section, we have the following
theorem as our conclusion.

Theorem 4 There is no β ∈ T2TB such that, C(β) = BFF2. ¥

Using Lemma 5 we can further prove that, there is no β ∈ T2TB such that,
BFF2 ⊆ Ca(β). These negative non-union results imply that a straightforward
type-2 analog of the Union Theorem does not exist. In the next section we show
how to strengthen the hypotheses in order to have a type-2 Union Theorem
under answer-length-cost model.

4 Union Theorems

According to Lemma 4, the convergence of 〈βi〉 is a necessary condition for
C(〈βi〉) to be a complexity class. However, Theorem 3 states that convergence
together with uniformity, ascendancy, and usefulness are not sufficient to obtain
a union theorem. Strong convergence turns out to be one of the necessary con-
ditions as indicated in the following theorem. We use a priority argument with
finite injuries to the theorem.

8

Theorem 5 (Type-2 Union Theorem) Suppose that 〈βi〉 is (i) uniform, (ii)
ascending, (iii) useful, and (iv) strongly convergent. Then, there is an α ∈ T2TB
such that, Ca(α) = Ca(〈βi〉). ¥

Both uniform and strong convergence are very strong conditions in the sense
that, for every (f, x) ∈ T ×N, every βi has to refer to the same fragment of f .
At the moment, we do not see any reasonable way to get rid of this requirement
of convergence. Here we discuss an unsuccessful try. We observe that the sample
〈βi〉 constructed in the proof of the Type-2 Non-Union Theorem (Theorem 3)
is not bounded, i.e., limi→∞ Fβi

(f, x) = ∞. We may ask, if 〈βi〉 is bounded by
some continuous functional, can we have a union theorem without requiring 〈βi〉
to be uniformly convergent? The next corollary gives a negative result.

Corollary 2 There exist a continuous functional F : T ×N → N and a uniform,
ascending, and useful 〈βi〉 such that, for every i ∈ N, Fβi ≤ F , and Ca(〈βi〉) is
not a type-2 complexity class. ¥

Note that if 〈βi〉 is bounded by a total continuous functional, then, by Lemma
2, 〈βi〉 is convergent but not necessarily uniformly convergent.

Recall that a strong type-2 time bound is an F-monotone one, i.e., for every
σ, τ ∈ F and a ∈ N, σ ⊆ τ ⇒ β(σ, a) ≤ β(τ, a). We say that 〈βi〉 is strong if and
only if every βi in 〈βi〉 is F-monotone. Computations clocked with such kind of
time bounds have an intuitive advantage that the budget provided by the clock
will never shrink during the courses of the computations. Thus, we may want the
type-2 time bound α constructed in the proof of the type-2 Union Theorem to
be strong. However, we are strongly skeptical about this. We have the following
conjecture.

Conjecture 2 There is a uniform, ascending, and strong 〈βi〉 such that, if there
is α ∈ T2TB such that Ca(α) = Ca(〈βi〉), then α is not strong. ¥

The Type-2 big-O Notation: The big-O notation is a key tool in algorithm anal-
ysis. A natural type-2 analog of the big-O notation can be defined as follows.

Definition 5 (Type-2 big-O Notation) Given β ∈ T2TB, define

O(β) =
{
ϕe

∣∣ ϕe ∈ Ca(cβ + d) for some c, d ∈ N
}

. ¥

In fact, one of our primary motivations to have a type-2 union theorem is to
examine whether O(β) is a well-defined type-2 complexity class. In our opinion,
if the conditions in the our union theorem do not rule out O(β) to be a type-2
complexity class, we should consider the conditions reasonable, no matter how
strong they are. Clearly, if the β is locking detectable, the the sequence βi defined
in O(β) is strongly convergent. Thus, by Theorem 5, we can prove the following
corollary:

Corollary 3 Let β ∈ T2TB. If β is locking detectable and useful, then there is
an α ∈ T2TB such that Ca(α) = O(β). ¥

9

Note that, although we have Theorem 9 in [8] asserting that there is an effective
operator ΘL such that, ΘL(β) is locking detectable and equivalent to β, but

[Ca(β) = Ca(ΘL(β))] 6⇒ [Ca(iβ + i) = Ca(iΘL(β) + i)].

On the other hand, if we define βi = ΘL(iβ + i), the strong convergence of 〈βi〉
may not hold. This is because, if i 6= j, the inaccessible points of βi and βj

are different. Thus, locking detectability of β is required in Corollary 3. We can
easily prove the following two addition corollaries.

Corollary 4 Let α, β ∈ T2TB. If α and β are locking detectable and useful,
then O(α + β) is a type-2 complexity class. ¥

The following corollary states that we can drop the less significant term in
the big-O notation. We omit the proof since it is straightforward.

Corollary 5 Let α, β ∈ T2TB. Suppose that both α and β are locking detectable
and useful. If α ≤∗ β, then O(α + β) = O(β). ¥

5 Conclusion

For decades type-2 complexity theory using a machine model remains an un-
touched territory. This paper is added to a series of our previous ones devoted
to building up this theory from scratch. As the framework becomes clearer due
to our specific clocking scheme for OTM and the precise definition of type-2
complexity classes, we decided to push the theory further by proving a union
theorem. Based on the theorem, as its type-1 counterpart, we can characterize
some intuitive complexity classes in a precise way. Unfortunately, the most fa-
miliar BFF2 fails to pass the test, i.e., it is not a type-2 complexity class under
our definition. This result on the one hand indicates that our framework may
not be broad enough to encompass this intuitive type-2 complexity class. On the
other hand, it may provide another legitimate reason to argue that BFF2 is not
precise enough for further investigation on a theoretical base. The hindsight of
our investigation in this paper may be that, we give a type-2 analog of the big-O
notation and, according to the union theorem we proved, we can argue that it
is a well-defined type-2 complexity class under our framework.

References

1. Manuel Blum. A machine-independent theory of the complexity of recursive func-
tions. Journal of the ACM, 14(2):322–336, 1967.

2. Stephen A. Cook and Bruce M. Kapron. Characterization of the basic feasible
functions of finite type. Proceedings of the 30th Annual IEEE Symposium on the
Foundations of Computer Science, pages 154–159, 1989.

3. J. Hartmanis and R. E. Stearns. On the computational complexity of algorithms.
Transitions of the American Mathematics Society, pages 285–306, May 1965.

10

4. Robert J. Irwin, Bruce M. Kapron, and James S. Royer. On characterizations of
the basic feasible functionals: Part I. Journal of Functional Programming, 2001.
(to appear).

5. Bruce M. Kapron. Feasible computation in higher types. Ph.d. dissertation, Uni-
versity of Toronto, 1991.

6. Bruce M. Kapron and Stephen A. Cook. A new characterization of type 2 feasi-
bility. SIAM Journal on Computing, 25:117–132, 1996.

7. Chung-Chih Li. Asymptotic behaviors of type-2 algorithms and induced Baire
topologies. In Proceedings of the Third International Conference on Theoretical
Computer Science, pages 471–484, Toulouse, France, August 2004.

8. Chung-Chih Li. Clocking type-2 computation in the unit cost model. In Arnold
Beckmann, Ulrich Berger, Benedikt Löwe, and John V. Tucker, editors, Proceed-
ings of Computability in Europe, CiE 2006: Logical Approaches to Computational
Barriers, CSR 7-2006, pages 182–192, Swansea, UK, 2006.

9. Chung-Chih Li. Speed-up theorems in type-2 computation. In S. Barry Cooper,
Benedikt Löwe, and Andrea Sorbi, editors, Proceedings of Computability in Europe,
CiE 2007: Computation and Logic in the Real World, pages 478–487, Siena, Italy,
June 2007. Springer, LNCS 4497.

10. Chung-Chih Li. Query-optimal oracle Turing machines for type-2 computations. In
Proceedings of Computability in Europe, CiE 2008: Logic and Theory of Algorithms,
pages 293–303, Athens, Greece, June 2008.

11. Chung-Chih Li and James S. Royer. On type-2 complexity classes: Preliminary
report. In Proceedings of the Third International Workshop on Implicit Computa-
tional Complexity, pages 123–138, Aarhus, Denmark, May 2001.

12. E. McCreight and A. R. Meyer. Classes of computable functions defined by bounds
on computation. Proceedings of the First ACM Symposium on the Theory of Com-
puting, pages 79–88, 1969.

13. Piergiorgio Odifreddi. Classical Recursion Theory, Volume II, volume 143 of Stud-
ies in Logic and the Foundations of Mathematics. Elsevier Science Publishing,
North-Holland, Amsterdam, 1999.

14. James S. Royer. Semantics vs. syntax vs. computations: Machine models of type-2
polynomial-time bounded functionals. Journal of Computer and System Science,
54:424–436, 1997.

15. Anil Seth. Complexity theory of higher type functionals. Ph.d. dissertation, Uni-
versity of Bombay, 1994.

Appendix

A Notations and Conventions

1. N ≡def The set of all natural numbers.
2. R ≡def N → N, the set of all recursive functions.
3. P ≡def N ⇀ N, the set of all partial functions.
4. T ≡def N → N, the set of all total functions.
5. PR ≡def N ⇀ N, the set of all partial recursive functions.
6. F ≡def The set of all finite functions from N to N. That is, for each σ ∈ F ,

the domain of σ is a finite subset of N. Unless stated otherwise, τ and σ
range over F .

11

7. dom(σ) ≡def The domain of σ.
8. card(σ) ≡def The cardinality of dom(σ).
9. 〈·, ·〉 : N ×N → N ≡def A fixed pairing function. That is, 〈·, ·〉 is a fixed

computable bijection between N×N and N.
10. N ≡def The discrete topology on the space N.
11. T ≡def The Baire topology on the space T .
12. T× N ≡def The product topology of T and N.
13. T(F) ≡def The induced topology of T × N determined by the continuous

functional F : T ×N → N.
14. ≤∗

2 ≡def The type-2 almost-everywhere less than or equal to relation.
15. OTM ≡def Oracle Turing Machine.
16. OTMa ≡def Oracle Turing Machine under the answer-length-cost model.
17. OTMu ≡def Oracle Turing Machine under the unit-cost model.
18. POTM ≡def Polynomial-time computable Oracle Turing Machine.
19. BFF ≡def Basic Feasible Functional.
20. For n ∈ N, |n| ≡def The length of the presentation of n.
21. For f ∈ T , |f | ≡def The length function of f defined by

|f | = λn ·max({|f(x)| : |x| ≤ n, x ∈ dom(f)}).

Note that f does not have to be a total function.
22. ‖σ‖ =

∑
i∈dom(σ)

(|i|+ |σ(i)|+ 2).

23. σ∼0 ≡def The zero extension of σ. That is, for every x ∈ N,

σ∼0(x) =
{

σ(x) if x ∈ dom(σ);
0 otherwise.

24. σ− ≡def σ− ⊂ σ, and dom(σ−) = dom(σ)− {max(dom(σ))}, where σ 6= ∅.
25. f[n] ≡def The initial n-element segment of f , where f is a total function.
26. σ[n] ≡def The initial n-element segment of σ, where dom(σ) is an initial

segment of N. By convention, if max(dom(σ)) ≤ n, then σ[n] = σ.

27. ((σ, x)) =
{
(f, x)

∣∣ σ ⊂ f
}
.

28. ϕe ≡def The function computed by the Turing Machine with index e.
29. ϕe ≡def The functional computed by the OTM with index e.
30. ϕe(x) ↓s ≡def The Turing Machine with index e halts in s steps on input

x ∈ N.
31. ϕe(f, x) ↓s ≡def The Oracle Turing Machine with index e halts in s steps

on input (f, x) ∈ T ×N.
32. T2TB ≡def The set of Type-2 Time-Bounds of type F ×N → N. Unless

stated otherwise, we let α, β, and γ range over T2TB.
33. Fβ ≡def The limit functional determined by β ∈ T2TB.
34. ϕe,β ≡def The functional computed by the Oracle Turing Machine with

index e clocked with β ∈ T2TB.
35. ϕe,β(f, x) ⇑ ≡def The β-clocked Oracle Turing Machine with index e is

clipped by the clock β during the course of computation on (f, x) ∈ T ×N.
36. Ee,β ≡def

{
(f, x)

∣∣ ϕe,β(f, x) ⇑}
.

12

37. Φe(f, x) ≡def The expenses needed to compute ϕe(f, x). We use step-
counting as our complexity measure.

38. Φ̃e(σ, x) : F ×N → N is defined by

Φ̃e(σ, x) =





Φe(σ0∼, x), if ϕe(σ0∼, x) ↓, and all said queries are in dom(σ);

The expenses of the computation of ϕe(σ0∼, x) right after the
first query outside dom(σ) is completed.

[Note that Φ̃e is not necessarily recursive.]
39. 〈βi〉 ≡def A sequence of type-2 time bounds β0, β1, β2,
40. C(β) ≡def The type-2 complexity class determined by β ∈ T2TB.
41. C(〈βi〉) ≡def

⋃
i C(βi).

B OTM, A Clocking Scheme, and Two Cost Models

Oracle Turing Machines: In addition to the standard I/O tape of a TM, an OTM
has two extra tapes called query tape and answer tape. The type-0 numerical
input is prepared at the beginning of the I/O tape and the type-1 functional input
is prepared as a function oracle attached to the machine before the computation
begins. During the course of computation, if the OTM needs some value from
the function oracle, the OTM have to place the quetion to the query tape and
then transit to a special state called query state. Then, the oracle will place the
answer to the answer tape in one step; no matter how big the answer might be.
As for the classical complexity theory, we fix a programming system 〈ϕi〉i∈N
associated with a complexity measure 〈Φi〉i∈N for our OTM’s. Conventionally,
we take the number of steps an OTM performed as our time complexity measure.
Note that the steps for the OTM to prepare the query and read the answer are
counted as a part of the computational cost.

In the following, we present a clocking scheme using our T2TB. This scheme
is used implicitly in some works such as Kapron and Cook’s [6], Seth’s [15], and
Royer’s [14].

Definition 1 (Clocked OTM). Let β ∈ T2TB and Me be an OTM with index
e. We say that Me is clocked by β if Me is simulated by the procedure shown in
Figure 1. Such a clocked OTM is denoted by Me,β and the functional computed
by Me,β is denoted by ϕe,β.

Consider the procedure in Figure 1. The budget provided by β is computed
upon every answer returned from the oracle during the course of the simulation
of Me on (f, x). If the simulation has overrun the budget, then the simulation
will be terminated at the line marked (⇑). In this case we say that Me is clipped
down by β on (f, a) denoted by ϕe,β(f, a) ⇑. On the other hand, if the simulation
reaches the line marked (⇓), which means that the simulation of Me on (f, a) is
successfully completed, then we say that ϕe,β(f, a) converges to value ϕe(f, a).
We denote this situation by ϕe,β(f, a) ⇓. Since β is convergent, it follows that the

13

Program for Clocked OTM Me,β :
input (f, x) ∈ T ×N;
var σ ∈ F ; q, y, expense, budget ∈ N; /* variable declaration */
σ ←− ∅; expense ←− 0; budget ←− β(σ, x); /* initialization */
Simulate Me on (f, x) step by step and upon each step completed do:

expense ←− expense + 1;
if (expense > budget) /* check budge */

then output ⊥ and stop; /* ⊥ is the bottom symbol. (⇑) */
if (Me halts with the output y)

then output y and stop; /* simulation completed. (⇓) */
if (the step just simulated completes an oracle query)

then do
q ←− current query;
σ ←− σ ∪ {(q, f(q))}; /* update query-answer set */
budget ←− β(σ, x); /* update budget */

end-do;
Resume the simulation;

End program

Fig. 1. A Clocking Scheme for OTM’s

simulation of Me on (f, a) will either complete or eventually be clipped down by
the clock. Therefore, for any β ∈ T2TB, ϕe,β is a total computable functional
of type T ×N → N. This removes the problem of POTM.

Unfortunately, the properties of β ∈ T2TB and our intuitive clocking scheme
are not sufficient to standardize a framework for type-2 complexity theory. The
way an OTM handles the oracle answers does matter. We have the following two
conventions under our clocking scheme.

Definition 2 (Two Cost Models for OTM’s).

1. Answer-Length Cost Model: Whenever the oracle returns an answer to the
oracle query, the machine is required to read every bit of the answer.

2. Unit Cost Model: The machine needs not to read any bit of the oracle answer
unless the machine decides to do so.

In other words, the cost for each answer returned from the oracle under the
answer-length cost model is one unit step plus the length of the answer, while
the other model is one. The underlying cost model used in [6, 14, 15] are the
answer-length cost model. Also, the outline of a type-2 complexity theory given
in [11] is also based on the answer-length cost model. The answer-length cost
model from many aspects is more manageable. Nevertheless, we do not think the
unit cost model is merely a peculiar convention. On the contrary, the unit cost
model is rather reasonable in real computation. For example, only the first bit
of the answer is needed to decide whether it is odd or even. However, the contro-
versial part is that, under the unit cost model, the computation can aggressively
gain some budget by just querying the oracle without reading the answers. This
trick makes the complexity theory under the unit cost model much flatter than

14

the theory under the other model, i.e., many interesting theorems in classical
complexity theory do not exist under unit cost model.

C Proofs of Lemmas and Theorems

Lemma 1 If β ∈ T2TB is accessible, then β is locking detectable..

Proof: Let β ∈ T2TB be accessible. Fix any OTMu Mu
e that witnesses β being

accessible. Clearly, given any (σ, x) ∈ F ×N, we can effectively decide if a given
(σ, a) is β-queriable. If not, (σ, a) must be a locking fragment of β. Thus, we can
have ` : F ×N → {0, 1} such that, `, on every (σ, x), returns 1 if (σ, x) is not
β-queriable, or 0 otherwise. (Note that ϕe = ϕu

e .) ¤

Lemma 2 Given uniform and ascending 〈βi〉, if there exists a total continuous
functional H : T ×N → N such that, for every i ∈ N, Fβi ≤ H, then 〈βi〉 is
convergent.

Proof: Suppose by contradiction that 〈βi〉 is not convergent. Thus, there is a
(f, x) ∈ T × N such that, there is no (σ, x) with σ ⊂ f that makes every βi

to converge on it. That is, for each i ∈ N, if σi ⊂ f and (σi, x) is a minimal
locking fragment of βi, then there exists j > i such that, (σi, x) is not a locking
fragment of βj . Let σi, i and j be such. Since 〈βi〉 is ascending, we have

βi(σi, x) = Fβi(f, x) ≤ βj(σi, x) < Fβj (f, x).

By assumption, lim
i→∞

Fβi(f, x) ≤ H(f, x), and hence lim
i→∞

Fβi(f, x) is not bounded.

But, since H is a total continuous functional, H(f, x) ↓ = y for some finite num-
ber y. This leads a contradiction, and hence 〈βi〉 cannot be convergent. ¤

Lemma 3 For any uniform and ascending 〈βi〉, there is a total continuous
functional H : T ×N → N such that, for every i ∈ N, Fβi ≤∗

2 H.

Proof: Define H : T ×N → N by

H(f, x) = Fβ(x+‖τ‖)(f, x),

where τ ⊂ f and (τ, x) is a minimal locking fragment of βx. It is clear that such
H is total and continuous.

Fix any i ∈ N. We shall prove that Fβi ≤∗
2 H. Fix (f, x) ∈ T ×N and let

τ ⊂ f be such that (τ, x) is a minimal locking fragment of βx. We have two
cases: i ≤ x and x < i.

15

Case 1: i ≤ x. Since 〈βi〉 is ascending, it is clear that,

Fβi
(f, x) ≤ Fβx

(f, x) ≤ Fβx+‖τ‖(f, x) = H(f, x).

Case 2: x < i. Suppose that H(f, x) < Fβi
(f, x), i.e.,

H(f, x) = Fβx+‖τ‖(f, x) < Fβi(f, x).

There are finitely many different (τ, x)’s such that, (τ, x) is a locking frag-
ment of βi and ‖τ‖ ≤ i−x. Therefore, {(f, x)|Fβi(f, x) > H(f, x)} is compact
in T(Fβi

,H), and hence Fβi
≤∗

2 H. ¤

Theorem 1 There is a uniform and ascending 〈βi〉 such that, C(〈βi〉) = BFF2.

Proof: For each k ∈ N, let pk be the two-variable polynomial defined by

pk(m,n) = k(m + n + 1)k.

Here we follow the definition of qd,k in [4]. For every d, k ∈ N, we recursively
define the second-order polynomial qd,k as follows.

For every g : N → N and y ∈ N,

q0,k =pk(0, y).

qd+1,k =pk(g(qd,k(g, y)), y).

Recall that |x| is a natural number that denotes the length of the bits represen-
tation of x ∈ N. We use the same notation for f ∈ T . For for f ∈ T , |f | is called
the length function defined as follows.

|f | = λn ·max({|f(x)| : |x| ≤ n, x ∈ dom(f)}).
By a straightforward argument, we have that, for every second-order polynomial
q over f : N → N and x ∈ N, if d is the depth of q, then there is a k ∈ N such
that, for every f and x,

q(|f |, |x|) ≤ qd,k(|f |, |x|).
For each i ∈ N, define βi : F ×N → N by

βi(σ, x) = max(|x|+ 1, qi,i(|σ∼0|, |x|)).
Since, for each i ∈ N and (σ, x) ∈ F × N, qi,i(|σ∼0|, |x|) is computable, βi is
computable and hence 〈βi〉 is uniform. It is also clear that βi is nontrivial, strong
F-monotone, and convergent. Moreover, since if i ≤ j, then qi,i ≤ qj,j , it follows
that 〈βi〉 is ascending.

If (σ, x) is a locking fragment of βi, then, for all f ⊃ σ, we have

Fβi(f, x) = max(|x|+ 1, qi,i(|f |, |x|)).

16

Thus, Fβi
is a second-order polynomial of depth i. For every second-order poly-

nomial q such that, for every (f, x) ∈ T × N, q(|f |, |x|) ≤ qd,k(|f |, |x|), we
have q ≤ qd,k ≤ Fβi

, where i = max(d, k). By the Lemma for the continuity of
bounds in [4], if the functional F can be computed in time bounded by Fβi , then
F ∈ C(βi). Thus, F is bounded by some βi if and only if there is an OMT Me

that computes F and its runtime is bounded by a second-order polynomial. ¤

Theorem 2 (Weak Type-2 Non-union Theorem) There are two type-2
time bounds, β1 and β2 such that,

∀α ∈ T2TB,C(α) 6= C(β1) ∪ C(β2).

Proof: Define F1, F2, F3 : T ×N → N, respectively, by

F1(f, x) =
{

23·|f(x)| if x is odd;
2|f(x)| otherwise,

F2(f, x) =
{

23·|f(x)| if x is even;
2|f(x)| otherwise,

F3(f, x) = 22·|f(x)|.

It is clear that we can choose e1, e2, and e3 so that ϕe1 = F1, ϕe2 = F2, ϕe3 = F3,
and the complexity of each program is bounded as follows, for each (f, x) ∈
T ×N:

Φe1(f, x) ≤
{ |x|+ 3 · |f(x)|+ c if x is odd;
|x|+ |f(x)|+ c otherwise,

Φe2(f, x) ≤
{ |x|+ 3 · |f(x)|+ c if x is even;
|x|+ |f(x)|+ c otherwise,

Φe3(f, x) ≤ |x|+ 2 · |f(x)|+ c,

where c ≥ 1 is some constant. Define β1, β2 : F ×N → N by:

β1(σ, x) =




|x|+ 3 · |σ(x)|+ c if x is odd and x ∈ dom(σ);
|x|+ |σ(x)|+ c if x is even and x ∈ dom(σ);
|x|+ c otherwise,

β2(σ, x) =




|x|+ 3 · |σ(x)|+ c if x is even and x ∈ dom(σ);
|x|+ |σ(x)|+ c if x is odd and x ∈ dom(σ);
|x|+ c otherwise.

Clearly, β1, β2 ∈ T2TB. It is also clear that ϕe1 ∈ C(β1) and ϕe2 ∈ C(β2). Since
there are infinitely many odd x such that, for some f ∈ T ,

Fβ2(f, x) = |x|+ |f(x)|+ c < Φe1(f, x) ≤ |x|+ 3 · |f(x)|+ c,

17

we have that ϕe1 6∈ C(β2). Similarly, ϕe2 6∈ C(β1), and ϕe3 6∈ C(β1) ∪C(β2).
By contradiction, suppose that there is an α ∈ T2TB such that, C(α) =

C(β1) ∪ C(β2). That means, F1, F2 ∈ C(α), and F3 6∈ C(α). By definition,
Ee1,α and Ee2,α are compact in T(ϕe1) and T(ϕe2), respectively, and Ee3,α is
noncompact in T(ϕe3). Because F1, F2, and F3 have the same minimal locking
fragment on every (f, x) ∈ T ×N, we have that T(ϕe1) = T(ϕe2) = T(ϕe3). For
simplicity, let T denote T(ϕe1), T(ϕe2), or T(ϕe3), without confusion.

Define Bo,Be ⊆ F ×N by:

Bo =
{
((σ, x))

∣∣ x is odd and dom(σ) = {x}} ,

Be =
{
((σ, x))

∣∣ x is even and dom(σ) = {x}} .

Let B = Bo∪Be . Thus, B is the basis of T consisting of minimal locking fragments
of ϕe1 , ϕe2 , and ϕe3 . Let O ⊆ T be an open cover for Ee3,α without any finite
subcover. Suppose

O = {((σ1, x1)), ((σ2, x2)), . . . },
where (σi, xi) is a minimal locking fragment of ϕe3 for every i ∈ N. Note that,
for every i ∈ N, dom(σi) = {xi}, and (σi, xi) is also a minimal locking fragment
of ϕe1 and ϕe2 . By the assumption on O, there are infinitely many ((σi, xi)) ∈ O
such that, the clock α cannot provide enough budget for the computation of
ϕe3,α on (σ∼0

i , xi). Since Φe3(σ
∼0
i , xi) ≤ |x|+ 2 · |σi(xi)|+ c, we have α(σi, xi) <

|x|+ 2 · |σi(xi)|+ c. In other words,

∞
∃ ((σ, x)) ∈ B [

α(σ, x) < |x|+ 2 · |σ(x)|+ c
]
. (3)

Since Ee1,α is compact in T, it follows that, for all but finitely many ((σ, x)) ∈ B,
we have Φe1(σ

∼0, x) ≤ α(σ, x). Thus,

∞
∀ ((σ, x)) ∈ Bo

[|x|+ 3 · |σ(x)|+ c ≤ α(σ, x)
]
. (4)

Similarly, consider Ee2,α. We have

∞
∀ ((σ, x)) ∈ Be

[|x|+ 3 · |σ(x)|+ c ≤ α(σ, x)
]
. (5)

From (4) and (5), we have

∞
∀ ((σ, x)) ∈ B [|x|+ 3 · |σ(x)|+ c ≤ α(σ, x)

]
. (6)

Clearly, (6) and (3) is a contradiction. Therefore, no such α exists. ¤

Theorem 3 (Type-2 Non-Union Theorem) There is a uniform, ascending,
useful, and convergent 〈βi〉, such that Ca(〈βi〉) is not a type-2 complexity class.

18

Proof: Define F : T ×N → N by

F (f, x) =

{
1 if f(0) = f(1) = · · · = f(x) = 0;
0 otherwise.

Clearly, F is computable and total. Let e be a ϕ-program for F such that, on
every (f, x), e does not make any unnecessary query outside {0, 1, . . . , x}, and

Φe(f, x) ≤ ‖f[x+1]‖+ |x|+ c,

for some constant c ≥ 1. It is clear that such an e exists. Define 〈βi〉 by:

βi(σ, x) =

{
|x|+ c if x ≥ i;
‖σ[x+2]‖+ |x|+ i otherwise.

Clearly, 〈βi〉 is uniform, ascending, and useful. For convergence, given (f, x) ∈
T ×N, it follows that f[x+2] is a locking fragment for all βi. Note that every βi

is locking detectable, but 〈βi〉 is neither strongly nor uniformly convergent. For
example, the minimal locking fragment for β0 is (∅, x), while for βi with i > x
the minimal locking fragment is (σ, x) where dom(σ) = {0, 1, . . . , x + 1}.

Claim 1: F 6∈ Ca(〈βi〉).
Fix any i ∈ N. For every (f, x) ∈ T ×N, if x ≥ i, then ϕe,βi(f, x) ⇑. Thus,
for any i ∈ N, F 6∈ Ca(βi), and hence F 6∈ Ca(〈βi〉).

Claim 2: For all α ∈ T2TB, Ca(α) 6= Ca(〈βi〉).
By contradiction, suppose that Ca(α) = Ca(〈βi〉). It follows that F 6∈ Ca(α).
Fix any (g, a) ∈ T × N such that, ϕe,α(g, a) ⇑. Thus, there must exist
σ ⊆ g[a+1] such that,

α(σ, a) < ‖σ‖+ |a|+ c.

Otherwise, ϕe,α(g, a) ⇓ . Note that a + 1 6∈ dom(σ).
Consider the follow computable functional F ′ : T ×N → N,

F ′(f, x) =

{
1 if x = a, σ ⊂ f, and f(a + 1) = 0;
0 otherwise.

If e′ is a ϕ-program for F ′, then, for every f ∈ T with σ ⊂ f , we have

Φe′(f, a) > ‖σ‖+ |a|+ |f(a + 1)|.

Clearly, no ϕ-program can compute F ′ with complexity less than ‖σ‖+ |a|+
|f(a + 1)| on ((σ, a)). Thus,

∀(f, a) ∈ ((σ, a)) [ϕe′,α(f, a) ⇑],

and hence ((σ, a)) ⊆ Ee′,α. Since (σ, a) is not a locking fragment of ϕe′ , it
follows ((σ, a)) is noncompact in T(ϕe′). Since if X is compact in T(ϕe′), then

19

every S ⊆ X is also compact in T(ϕe′), by contrapositive, we conclude that
Ee′,α is noncompact in T(ϕe′). Therefore, F ′ 6∈ Ca(α).
On the other hand, we can have a ϕ-program e′ for F ′ such that, for every
(f, x) = T ×N, we have

Φe′(f, x) ≤
{
|x|+ c if x 6= a,

‖f[a+2]‖+ |a|+ c if x = a.

Thus, if we select a sufficiently large i ≥ max(c, a), then ϕe′ ∈ Ca(βi)
and hence F ′ ∈ Ca(〈βi〉). This contradicts our assumption that Ca(α) =
Ca(〈βi〉). Therefore, Ca(α) 6= Ca(〈βi〉). ¤

Corollary 1 There is a uniform, ascending, and uniformly convergent 〈βi〉, such
that Ca(〈βi〉) is not a type-2 complexity class.

Sketch of Proof: We can use the exact arguments for Theorem 3 with the fol-
lowing modification on 〈βi〉. For every i, x ∈ N and σ ∈ F , define

βi(σ, x) =





‖σ[x+2]‖+ |x|+ i if x < i;
|x|+ c + 1 if x ≥ i and σ(0) = σ(1) = · · · = σ(x + 1) = 0;
|x|+ c otherwise.

It is clear that every βi is to converge at the same fragment. Note that, 〈βi〉 is
no longer useful. ¤

Theorem 5 (Type-2 Union Theorem) Suppose that 〈βi〉 is (i) uniform, (ii)
ascending, (iii) useful, and (iv) strongly convergent. Then, there is an α ∈ T2TB
such that, Ca(α) = Ca(〈βi〉). ¥

Proof: Let ` : F × N → {0, 1} be a locking detector for 〈βi〉 as in Definition
4. Let 〈·, ·〉 : F ×N → N be our standard 1-1 pairing function with the extra
property that: For all x ∈ N and σ, τ ∈ F , if σ ⊆ τ , then 〈σ, x〉 ≤ 〈τ, x〉. Such a
〈·, ·〉 can be constructed easily.

The following requirements are naively lifted from the original arguments in
the proof of the Union Theorem2,

P ∗n :
∞
∀ (σ, x)[βn(σ, x) ≤ α(σ, x)].

These would certainly be easy to satisfy, but they are not sufficient for our
purposes. The problem is that, we have

∞
∀ (σ, x)[β(σ, x) ≤ α(σ, x)] 6⇒ Ca(β) ⊆ Ca(α).

2 See [13], page 55

20

We therefore use the following requirements for our priority argument.

Pn: Ca(βn) ⊆ Ca(α).
Nn: [ϕn 6∈ Ca(〈βi〉)] ⇒ [ϕn 6∈ Ca(α)].

The priority ordering of these is:

N0 > P0 > N1 > P1 > · · · .

Clearly, if we can construct an α ∈ T2TB that satisfies all of these requirements,
then the theorem follows.

We construct a type-2 time bound α in stages. We will make sure that every
Pn will be satisfied after finitely many stages. Each Nn will be satisfied in the
limit. That is, no finitary actions can guarantee that Nn is satisfied, but it will be
so if we take certain actions infinitely often. Moreover, we will see in a moment
how a Pi can be injured when we try to satisfy some Nj with j ≤ i in finitely
many stages, although there are infinitely many stages in which some actions
will be taken in order to satisfy each such Nj .

We maintain an array, guess, which is global to every stage. At the beginning
of each stage k > 0, the values of guess(0), guess(1), . . . , guess(k−1) are natural
numbers defined from the previous stage. Intuitively, guess(e) = n means that
we guess the functional ϕe is in Ca(βn). Each stage e will consider ϕ-programs
0, 1, . . . , e. In stage e, when ϕ-program e is first considered, we guess that ϕe ∈
Ca(βe) and set guess(e) = e. In a later stage k, if we have evidence that ϕe

should not be in Ca(βguess(e)), then the value of guess(e) will be changed to k.

Actions of The Algorithm for α: The algorithm for α is given in Figure 2 below.
Here we discuss some of the strategies behind this algorithm. Using the definition
in item 38 of the list in Appendix A, Φ̃e(σ, x) is the cost of computing ϕe(σ∼0, x)
up to the completion of the first query outside dom(σ), or Φ̃e(σ, x) is simply the
cost of computing ϕe(σ∼0, x) if no query outside dom(σ) made during the course
of the computation.

In stage k = 〈σ, x〉 the algorithm for α takes σ and x as its inputs. If there
exists τ ⊂ σ such that `(τ, x) = 1, we force α to converge on (σ, x) and no
further action will be taken. Otherwise, the algorithm checks programs e =
0, 1, . . . , k and takes some proper actions according to the following. If Φ̃e(σ, x) ≤
βguess(e)(σ, x), then this means that we don’t have enough evidence to refute
the current guess, βguess(e), for program e in this stage. In this case we shall
let α provide enough budget for the computation of ϕe(σ∼0, x) to finish either
completely or else up to the point where the first query outside dom(σ) is made.
On the other hand, if βguess(e)(σ, x) < Φ̃e(σ, x), then it is doubtful that ϕe ∈
Ca(βguess(e)). We thus force α to clip the computation of ϕe(σ∼0, x) and give
program e a bigger guess, k, for another chance. For convenience, define:

Ak =
{

e
∣∣ 0 ≤ e ≤ k, Φ̃e(σ, x) ≤ βguess(e)(σ, x)

}
.

Bk =
{

e
∣∣ 0 ≤ e ≤ k, βguess(e)(σ, x) < Φ̃e(σ, x)

}
.

We use A1 and A2 to denote the following two actions.

21

Program for α
input σ : F , x : N;
k ←− 〈σ, x〉; /* We call this stage k. */

/* guess is an array of natural numbers global to all stages. */
/* The initial values of guess(0),guess(1), . . . , guess(k−1) for this stage k are

obtained by running α on every (σ′, x′) with 0 ≤ 〈σ′, x′〉 < k. */

for 〈σ′, x′〉 = 0 to k − 1 Run α(σ′, x′);

/* Guess that the new ϕ-program k is bounded by βk. */
guess(k) ←− k;

/* We check if α has to converge at this point. */
4 if ∃τ [τ ⊂ σ and `(τ, x) = 1)]

then return max({α(τ, x)|τ ⊂ σ});
/* A1: Since max(guess(0), guess(1), . . . , guess(k − 1)) < k and 〈βi〉 is as-

cending, we set ceiling to βk(σ, x) as the maximal value for α(σ, a) in such

a way the action A1 can be satisfied. */

ceiling ←− βk(σ, x);

/* A2: In the following, we check ϕ-programs e = 0, 1, . . . , k. If ϕe is not

bounded by βguess(e) on (σ, x), then we take the action A2 by lowering

ceiling and assign the new guess, k, for e. */

for e = 0 to k do
if Φ̃e(σ, x) > βguess(e)(σ, x) do /* e is picked on. */

ceiling ←− min(ceiling, βguess(e)(σ, x));
guess(e) ←− k;

end if-do;
end for-do;
return ceiling;

End program

Fig. 2. An Algorithm for the Type-2 Union Theorem

22

A1: α is defined so as to provide enough budget allowing the computations
of the ϕ-programs in Ak on (σ∼0, x) to finish either completely or else up to
the point where the first query outside dom(σ) is made. This action explicitly
tries to satisfy requirements Pguess(0), Pguess(1), . . . , and Pguess(k).
A2: α is defined so as to clip the computations of the ϕ-programs in Bk on
(σ∼0, x), and the algorithm will give these programs a new guess, k. This
action is intended to satisfy requirements N0, N1, . . . , Nk but it may also
injure some Pguess(e), where e ∈ Ak.

We shall argue in a moment that every requirement will be satisfied eventu-
ally as the stages progressed. In other words, each Pe can be injured by some
Nk at most finitely many times. Note that, for every n ∈ N, Pn+1 ⇒ Pn. Thus,
if Pk is satisfied, so is every Pn with n ≤ k.

Terminology and Notation: Suppose (σ, x) ∈ F ×N and 〈σ, x〉 = k.

1. Let guessk denote the state of the array, guess, as of the beginning of stage
k. The variable ceiling : N that is local to every stage holds the maximal
value of α(σ, x) for the action A2. Let ceilingk denote the value of ceiling
as of the end of stage k. Thus, α(σ, x) = ceilingk.

2. We say that the ϕ-program e ≤ k participates in lowering ceiling in stage
k if and only if Φ̃e(σ, x) > βguessk(e)(σ, x) and, for all τ ⊂ σ, `(τ, x) = 0.

3. We say that α picks on ϕ-program e at (σ, x) if and only if

0 ≤ e ≤ k and Φ̃e(σ, x) > α(σ, x).

According to the definition of Φ̃e, for every σ, τ ∈ F with σ ⊂ τ and x ∈ N,
we have Φ̃e(σ, x) ≤ Φ̃e(τ, x). It is clear that, if α picks on ϕ-program e at
(σ, x), then, for all f ⊃ σ, the clock α will clip the computation of Me on
(f, x), i.e., ϕe,α(f, x) ⇑. However, since (σ, x) is not necessarily a locking
fragment of ϕe and it is possible that α(σ, x) ≤ α(τ, x), it follows that there
may exist some other ϕ-program e′ for ϕe such that, at the beginning of the
computation, ϕ-program e′ queries the oracle on dom(τ) in order to gain the
budget α(τ, x) first. In such a way, we may have ϕe′,α(f, x) ⇓.

4. We say that ϕ-program e is a casualty of α at (σ, x) in stage k, if and only
if there exists some i ≤ k such that

βguessk(i)(σ, x) < Φ̃i(σ, x), and

βguessk(i)(σ, x) < Φ̃e(σ, x) ≤ βguessk(e)(σ, x).

On (σ, x), α does not intend to pick on e, but when α tries to pick on some
other ϕ-program (in the case above, ϕ-program i), it lowers ceiling enough
so that the clock α may clip some computations of Me on (f, x) as a casualty,
where σ ⊂ f .

Unlike the construction for the original proof of the Union Theorem [12, 13],
in some cases of ϕe ∈ Ca(〈βi〉), the value of guess(e) may change infinitely

23

often due to the fact that a compact set may be infinite. The difference between
ϕe ∈ Ca(〈βi〉) and ϕe 6∈ Ca(〈βi〉) is the following. In case that ϕe ∈ Ca(〈βi〉), if
α should change its guess for program e on infinitely many (σ, x)’s, then all but
finitely many of these are locking fragments of ϕe but not minimal ones. That
is, the set ((σ, x)) is not T(ϕe)-open, and there are finitely many basic T(ϕe)-
open sets that cover all of such infinitely many ((σ, x))’s. On the other hand,
if ϕe 6∈ Ca(〈βi〉), α will change its guess on infinitely many minimal locking
fragments of ϕe.

Claim 1: α ∈ T2TB. We shall prove that α is computable, nontrivial, F-
monotone, and convergent.
1. Computability. Since 〈βi〉 is strongly convergent, the locking detector `

is recursive. Also, it is clear that Φ̃e(σ, x) > βguess(e)(σ, x) is recursively
decidable. Thus, α is recursively computable.

2. Nontriviality. For any (σ, x), the value of α(σ, x) is based on the value
of βi(σ, x) for some i ∈ N. Thus, α must be nontrivial.

3. F-monotonicity. Since whenever α decides to converge on (σ, x), α out-
puts max({α(τ, x)|τ ⊂ σ}), it is clear that α is F-monotonicity.

4. Convergence. Fix (f, x) ∈ T ×N. Since 〈βi〉 is strongly convergent and
` is its locking detector, there is a σ ∈ F with σ ⊂ f such that the
condition of the if statement in line marked 4 is true. Thus, for all
τ ⊇ σ, α(τ, x) = α(σ, x) and hence α is convergent.

Therefore, α ∈ T2TB.
Note that although we have the assumption that 〈βi〉 is useful, α may not
be useful because it is possible that `(σ, x) = 0 and βi(σ, x) ↓, and

α(σ, x) = βi(σ, x) < ‖σ‖+ |x|+ 2.

We will see later that this introduces a difficulty when we need to patch
some ϕ-program e that is clipped by α at a point (σ, x) in case (σ, x) is not
a locking fragment of α.

Claim 2:
∞⋃

n=0
Ca(βn) ⊆ Ca(α).

Fix n ∈ N and suppose that F ∈ Ca(βn). Moreover, suppose that e is
a ϕ-program for F and Ee,βn is compact in T(ϕe). We shall prove that
F ∈ Ca(α). Note that we cannot prove that Ee,α is compact in T(ϕe).
Instead, we will prove that there is another ϕ-program p for F such that
Ep,α is compact in T(ϕp). Define:

Ie =
{

(σ, x) ∈ F ×N
∣∣ α(σ, x) < Φ̃e(σ, x)

}
. (7)

Oe =
{
(σ, x) ∈ F ×N

∣∣ ((σ, x)) is open in T(ϕe)
}

. (8)
Xe = Ie ∩Oe. (9)

Ie is the set on which ϕ-program e is picked on by α. Oe is the set of
the minimal locking fragments of ϕe and the sub-fragments of the minimal
locking fragments of ϕe. In other words, for every (σ, x) ∈ Oe, there exists

24

some τ ⊇ σ such that, (τ, x) ∈ Oe and (τ, x) is a minimal locking fragment
of ϕe.
We first prove that Xe is finite. Then, we show that there is another ϕ-
program p for F such that Ep,α is compact in T(ϕp). Note that if p is another
ϕ-program for F , then, by definition, T(ϕp) = T(ϕe) = T(F), although ϕ-
programs p and e may make different queries. We will carefully distinguish
between T(ϕp) and T(ϕe) when talking about the compactness of Ep,α or
Ee,α in order to avoid confusion.

Claim 2.1: Xe is finite.
In any stage we say that the guess for e is a bad guess if guess(e) < n. Also,
we say that (f, x) is a bad input if (f, x) ∈ Ee,βn . Without loss of generality,
we may assume that, if (f, x) ∈ Ee,βn

, then for every i ∈ N ϕe,βi
(f, x) ⇑.

Fix any (σ, x) ∈ Oe. In the course of the computation of α on (σ, x), there
are three possible reasons for (σ, x) to be in Ie: (i) the ceiling is too low due
to a bad guess from some previous stage for e, (ii) e is a casualty when α
tries to pick on some other ϕ-programs at (σ, x), and (iii) σ ⊂ f and (f, x)
is a bad input, i.e., (f, x) ∈ Ee,βn . Note that these three reasons are not
exclusive. (See Fig. 3.)

r
∅
­

­
­

­
­

­
­

­
­

­
­

­
­Á

¢
¢
¢
¢̧

A
A

A
AK

Ee,βn

J
J

J
J

J
J

J
J

J
J

J
J

J] minimal locking fragments
of βn

minimal locking fragments
of ϕe

a, b due to bad guesses
c, d due to casualties
e, f, g due to bad inputs

r r
r

g f

e

rc
rb

ra
rd

Fig. 3. Points on which α clips the computation of ϕ-program e.

1. Bad Guess: According to the algorithm, whenever e participates in
lowering ceiling, the value of guess(e) will be changed to a bigger one.
Thus, only a finite number of bad guesses could have been made before
guess(e) becomes equal to or bigger than n. Therefore, only finitely many
(σ, x)’s could be introduced into Xe due to bad guesses.

2. Casualty: For some e′ ∈ N, α tries to pick on the ϕ-program e′ at (σ, x)
by lowering ceiling in stages 〈σ, x〉, but the ceiling is too low so that the
computation of ϕ-program e will be clipped by α as a casualty. One can
see that such e′ cannot be bigger than n, otherwise the guess for e′ is
always bigger than n and the ceiling will never get too low to for e. There

25

are only finitely many such ϕ-programs with indices smaller that n. For
each such e′, it does not matter whether ϕe′ is in Ca(〈βi〉), the guess
for e′ will become bigger and bigger until it gets a correct one or passes
n. Moreover, since 〈βi〉 is ascending, it follows that this ϕ-program e′

introduces at most finitely many (σ, x)’s into Xe.
3. Bad Inputs: Suppose (σ, x) ∈ Xe not because of the two reasons dis-

cussed above. It must be the case that σ ⊂ f for some (f, x) ∈ Ee,βn
.

One can see that (σ, x) must be a minimal locking fragment of ϕe, oth-
erwise Ee,βn

cannot be compact in T(ϕe). Thus, ((σ, x)) is a basic open
set of Ee,βn

. By the assumption that Ee,βn
is compact in T(ϕe), we only

have finitely many such (σ, x).
Therefore, Xe is finite. Next, we shall argue that, ϕe ∈ Ca(α).

Claim 2.2: ϕe ∈ Ca(α).
It is clear that if we clock e with α we have

Ee,α =
{
((σ, x))

∣∣ (σ, x) ∈ Xe

}
.

However, Ee,α may not be compact in T(ϕe) because there may be some
(σ, x) ∈ Xe that is not a locking fragment of ϕe due to a bad guess or
casualty as discussed above. Let

Pe =
{
(σ, x)

∣∣ (σ, x) ∈ Xe and (σ, x) is not a locking fragment of ϕe.
}

Our goal is to show that we can patch ϕ-program e on those (σ, x) ∈ Pe

under the budget provided by α.
At first, we show that, for every (σ, x) ∈ Pe,

α(σ, x) ≥ ‖σ‖+ |x|+ 2.

Note that α may not be useful. Suppose (σ, x) ∈ Pe and, for some i ∈ N,

βi(σ, x) = α(σ, x).

Since (σ, x) is not a locking fragment of ϕe, it follows that, for every f ⊃ σ,
ϕ-program e on (f, x) must query the oracle outside dom(σ). Thus, βn cannot
converge at (σ, x), otherwise Ee,βn is not compact in T(ϕe) under the answer-
length-cost model. By the assumptions that 〈βi〉 is uniformly convergent and
that βn does not converge at (σ, x), we know that neither does βi converge
at (σ, x). Since βi is useful, it follows that

βi(σ, x) = α(σ, x) ≥ ‖σ‖+ |x|+ 2.

Similarly, for every η ⊆ σ, there is some j ∈ N such that,

βj(η, x) = α(η, x) ≥ ‖η‖+ |x|+ 2. (10)

Let q be the first query outside dom(σ) made during the course of the com-
putation of Φ̃e(σ, x). Clearly, for all τ ∈ F such that dom(τ)−dom(σ) = {q},
we have (τ, x) ∈ Oe. Suppose (τ, x) 6∈ Ie and 〈τ, x〉 = k. We have

Φ̃e(τ, x) ≤ βguessk(e)(τ, x) ≤ ceilingk = α(τ, x).

26

Thus, we can have a ϕ-program e′ to check σ ⊂ f at the beginning of the
computation on any (f, x) ∈ T ×N. If σ ⊂ f is false, e′ computes F (f, x)
exactly same as e does. If σ ⊂ f is true, e′ queries [f(q) =?]. This can be
done by an OTMa clocked by α because of (10), and in case the extra query
[f(q) =?] is needed, the budget, α(σ, x), must be enough to make the extra
query because βi does not converge at (σ, x) and βi is useful. It is clear that

Xe′ = Xe − {(σ, x)}.
Since Pe is finite, we can use the same idea to remove every (σ, x) ∈ Pe and
result in a patched ϕ-program p for ϕe such that,

Ep,α =
{
((σ, x))

∣∣ (σ, x) ∈ (Xe − Pe)
}

.

Clearly, Ep,α is compact in T(ϕp). Since F = ϕe = ϕp, it follows that
F ∈ Ca(α).

Claim 3: Ca(α) ⊆
∞⋃

n=o
Ca(βn).

Suppose ϕn 6∈ Ca(〈βi〉). It is easy to see that any guess for ϕ-program n
cannot satisfy n forever, and thus α will lower down the ceiling to pick on
ϕ-program n at infinitely many locking fragments of ϕn. Since Xn is not
finite, we cannot patch ϕ-program n under a fixed cost in the same way
discussed in Claim 2.2. Thus, ϕn 6∈ Ca(α).

Since Ca(〈βi〉) =
∞⋃

n=o
Ca(βn), by Claims 2 and 3, we therefore have Ca(α) =

Ca(〈βi〉) ¤

Discussion Consider the proof of the theorem above. The construction for α
does not guarantee that α is F-monotone. It is possible that α shrinks on some
(σ, a) ∈ F ×N in order to pick on some ϕ-program e as in the following case.
Suppose guess(e) contains an index i such that ϕe 6∈ Ca(βi) and α needs to pick
on e on input (σ, a). Moreover, on every (τ, a) with τ ⊂ σ, α does not pick on
e because e queries outside dom(τ) and βi’s budget is enough for e to complete
the queries. Thus, it is possible that α on some (τ, a) with τ ⊂ σ outputs a
value bigger than βi(σ, a). Thus, we need to explicitly maintain a floor in order
to prevent α from shrinking. However, such floor creates a difficulty in trying to
prove Ca(α) ⊆ Ca(〈βi〉). This is because we have to argue that: If F 6∈ Ca(〈βi〉),
then there is no ϕ-program e for F such that, every time when α tries to pick
on e, e is protected by the floor. That is, we need to prove that there is no such
ϕ-program e for F such that, for every stage k = 〈σ, x〉 when α tries to pick on
e at (σ, x), the following situation occurs: floor ≥ Φ̃e(σ, x) > βguess(e)(σ, x).

At the moment we are skeptical about the existence of a way to fix this
problem and hence we propose the following conjecture.

Conjecture 2 There is a uniform, ascending, and strong 〈βi〉 such that, if there
is α ∈ T2TB such that Ca(α) = Ca(〈βi〉), then α is not strong. ¥

27

Corollary 2 There exist a continuous functional F : T ×N → N and a uniform,
ascending, and useful 〈βi〉 such that, for every i ∈ N, Fβi ≤ F , and Ca(〈βi〉) is
not a type-2 complexity class.

Sketch of Proof: Note that the 〈βi〉 given in the proof of Theorem 3 is not
bounded. We modify it as follows: let d ≥ max(c, c′, a), where c, c′, and a are
the same constants in the arguments of the proof of Theorem 3. Define

βi(σ, x) =

{
|x|+ c if x ≥ i;
‖σ[x+2]‖+ |x|+ d otherwise.

It is clear that, for every (f, x) ∈ T ×N and i ∈ N, βi is bounded as

Fβi
(f, x) ≤ F (f, x) = ‖f[x+2]‖+ |x|+ d.

Then, we use the exact arguments in the proof of Theorem 3 except the definition
for 〈βi〉 to prove this corollary. ¤

Corollary 3 Let β ∈ T2TB. If β is locking detectable and useful, then there is
an α ∈ T2TB such that Ca(α) = O(β).

Proof: Let c, d ∈ N and i = max(c, d). By the basic hierarchy, we have Ca(cβ +
d) ⊆ Ca(iβ + i). Thus,

O(β) = Ca(〈βi〉), where βi = iβ + i.

Clearly, 〈βi〉 is uniform and ascending. Suppose β is locking detectable and use-
ful. Then, for every i > 0, iβ+ i is also useful. Moreover, if ` is a locking detector
for β, then ` is a locking detector for 〈βi〉. Thus, 〈βi〉 is strongly convergent. By
Theorem 5, there is an α ∈ T2TB such that Ca(α) = Ca(〈βi〉) = O(β). ¤

Corollary 4 Let α, β ∈ T2TB. If α and β are locking detectable and useful,
then O(α + β) is a type-2 complexity class.

Sketch of Proof: Let `α, `β be locking detectors of α and β, respectively. For
every (σ, x) ∈ F ×N, define

γ(σ, x) = α(σ, x) + β(σ, x).

Clearly, γ is a useful type-2 time bound if both α and β are. For locking de-
tectability, define ` : F ×N → {0, 1} by

`(σ, x) =

{
1 if `α(σ, x) = `β(σ, x) = 1;
0 otherwise.

Thus, ` is a locking detector for γ. By Corollary 3, O(α+β) is a type-2 complexity
class. ¤

28

