
Computability in Europe 2007

Computation and Logic in the Real World

University of Siena, June 18-23, 2007

Title:

Speed-up Theorems in Type-2 Computation

Abstract:

A classic result known as the speed-up theorem [2, 3] in the classical com-
plexity theory shows that there exist some computable functions that do
not have best programs for them. In this paper we lift this result into type-2
computation under the notion of our type-2 complexity theory depicted in
[14, 12, 13]. While the speed-up phenomenon is essentially inherited from
type-1 computation, we cannot directly apply the original proof to our
type-2 speed-up theorem because the oracle queries can interfere the speed
of the programs and hence the cancelation strategy used in the original
proof is no longer correct at type-2. We also argue that a type-2 analog
of the operator speed-up theorem [15] does not hold, which suggests that
this curious phenomenon disappears in higher-typed computation beyond
type-2.

Keywords:

Type-2 Complexity Theory, Type-2 Computation, Speed-up Theorems

Author:

Chung-Chih Li, Ph.D.
Assistant Professor
School of Information Technology

P.O. Box 5150
Old Union
Illinois State University
Normal, IL 61790, USA

Tel: +1-309-438-7952
Fax: +1-309-438-5113

e-mail: cli2@ilstu.edu

Speed-up Theorems in Type-2 Computation

Chung-Chih Li

School of Information Technology
Illinois State University
Normal, IL 61790, USA

Abstract. A classic result known as the speed-up theorem [2, 3] in the
classical complexity theory shows that there exist some computable func-
tions that do not have best programs for them. In this paper we lift this
result into type-2 computation under the notion of our type-2 complex-
ity theory depicted in [14, 12, 13]. While the speed-up phenomenon is
essentially inherited from type-1 computation, we cannot directly apply
the original proof to our type-2 speed-up theorem because the oracle
queries can interfere the speed of the programs and hence the cancela-
tion strategy used in the original proof is no longer correct at type-2. We
also argue that a type-2 analog of the operator speed-up theorem [15]
does not hold, which suggests that this curious phenomenon disappears
in higher-typed computation beyond type-2.

1 Introduction

Speed-up phenomena have been extensively studied by mathematicians for more
than a half century, which in logical form was first remarked by Gödel [8].1 In
[2, 3] Blum re-discovered the speed-up theorem in terms of computable functions
and his complexity measures. The theorem asserts that the best program does
not always exist for some computable functions. In order to state the theorem
precisely, we first fix some notations and conventions. By computable we mean
Turing machine computable. A function is said to be recursive if it is total and
computable. Let ϕe denote the function computed by the eth Turing machine
and Φe denote the cost function associated to the eth Turing machine. More
precisely, let 〈ϕi〉i∈N be an acceptable programming system [16] and 〈Φi〉i∈N be
a complexity measure [2] associated to 〈ϕi〉i∈N, where N is the set of natural

numbers. The standard asymptotic notion,
∞
∀ , is read as for all but finitely many2.

We state the original speed-up theorem as follows:

Theorem 1 (The Speed-up Theorem [2, 3]). For any recursive function r,
there exists a recursive function f such that

(∀ i : ϕi = f) (∃j : ϕj = f) (
∞
∀ x)

[
r(Φj(x)) ≤ Φi(x)

]
.

1 The original remarks were translated and collected in [7], pages 82-83. More discus-
sion about the relation between the computational speed-up phenomena and Gödel’s
speed-up results in logic can be found in [20].

2 The negation of “for all but finitely many” is “exist infinitely many” denoted by
∞
∃ .

We say that function f in the theorem above is r-speedable. We sketch our version
of proof in Appendix A which will be used as a template proof for our type-2
speed-up theorem. More original proofs can be found in [2, 3, 20, 6, 21, 4, 18].

Many variations of the speed-up theorem have been proven since Blum’s [2,
3]. We are interested in Meyer and Fischer’s operator speed-up theorem [15]
where the speed-up factor r, a recursive function, is strengthened to an effective
operator Θ as follows:

Theorem 2 (The Operator Speed-up Theorem [15]). For any total effec-
tive operator Θ, there is a recursive function f that can be uniformly constructed
such that

∀ i : ϕi = f ∃j : ϕj = f
∞
∀ x[Θ(Φj)(x) ≤ Φi(x)].

Our goal of the present paper is to lift these two speed-up theorems to type-2
computation. We obtain a type-2 analogy of Theorem 1. However, Theorem 2
fails to hold in the context of type-2 computation, which suggests that there
always exist the best programs in higher-typed computation beyond type-2.

In the next section, we briefly introduce the current status of type-2 com-
plexity theory and describe some necessary conventions and our setups. These
paragraphs are perforce brief and superficial due to the space constraints. Also,
as the matter of fact that the speed-up theorem is rather independent from the
other part of the theory, our coverage will be very limited to related topics only.
More details should be found in [14, 12, 13].

2 Conventions & Type-2 Complexity Theory

We consider natural numbers as type-0 objects and functions over natural num-
bers as type-1 objects. For type-2 objects, they are functionals that take as inputs
and produce as outputs type-0 or type-1 objects. By convention, we consider ob-
jects of lower type as special cases of higher type, and thus, type-0 ⊂ type-1 ⊂
type-2. Without loss of generality we restrict type-2 functionals to our standard
type T ×N ⇀ N, where T is the set of total functions and ⇀ means possibly
partial. Note that f ∈ T may not be computable. For n ∈ N, |n| denotes the
length of the binary bit string representing n. For type-2 computation we use
the Oracle Turing Machine (OTM) as our standard computing formalism. An
OTM is a Turing machine equipped with a function oracle. Before an OTM be-
gins to run, the type-1 argument should be presented to the OTM as an oracle.
In addition to the standard I/O tape for type-0 input/output and intermediate
working space, an OTM has two extra tapes – one is for oracle queries and the
other one is for the answers to the queries. During the course of the computa-
tion, the OTM may enter a special state called query-state and then the oracle
will return the answer to the question left on the query-tape and the answer will
be prepared on the answer-tape for the OTM to read. All these will be done at
no cost to the OTM. However, the OTM has to prepare the queries and read

2

their answers at its own computational cost. We also fix a programming system
〈ϕ̂i〉i∈N associated with some complexity measure 〈Φ̂i〉i∈N for OTM. By con-
vention, we take the number of steps as our time complexity measure, i.e., the
number of times an OTM moves its read/write heads. Also, we use M̂e to denote
the OTM with index e and ϕ̂e is the functional computed by M̂e. Upon these
agreements, in [19] Seth followed Hartmanis and Stearns’s notion [9] to define
type-2 complexity classes. He proposed two alternatives:

1. Given recursive t : N → N, let DTIME(t) denote the set of type-2 functionals
such that, for every functional F ∈ DTIME(t), F is total and there is an
OTM M̂e that computes F and, on every (f, x) ∈ T ×N, M̂e halts within
t(m) steps, where m = |max({x}∪Q)| and Q is the set of all answers returned
from the oracle during the course of the computation.

2. Given computable functional H : T ×N → N, let DTIME(H) denote the set
of type-2 functionals such that, for every functional F ∈ DTIME(H), F is
total and there is an OTM M̂e that computes F and, on every (f, x) ∈ T ×N,
M̂e halts within H(f, x) steps.

The key idea behind Seth’s complexity classes is directly lifted from [9]. The
same machine characterization idea can also be found in other works such as
Kapron and Cook’s [10] and Royer’s [17]. In Seth’s first definition stated above,
the resource bound is determined by the sizes of oracle answers; but the set Q
in the definition of DTIME(t) in general is not computable and hence can’t be
available before the computation halts, if ever. Alternatively, we may update
the bound dynamically upon each answer returned from the oracle during the
course of the computation. But if we do so, there is no guarantee that a clocked
OTM must be total. For example, Cook’s POTM [5] is an OTM bounded by a
polynomial in this manner but a POTM may run forever. Kapron and Cook’s
proposed their remedies in the context of feasible functionals and gave a very neat
characterizations of type-2 Basic Feasible Functionals (BFF) in [10], where the
so-called second-ordered polynomial is used as the bound. In [12, 13] we adapted
all these ideas and extended the second-ordered polynomial to a general type-2
computable functional to have the following complexity class:

DTIME(H) = {F ∣∣ ∃e[ϕ̂e = F and Φ̂e ≤∗
2 H]}. (1)

The notion of ≤∗
2 used above is crucial to our works and will be formally defined

later in this section. Along the line of the classical complexity theory initiated by
a series of seminal papers [9, 2, 3], our previous results in [14, 12, 13] show that
the complexity theory at type-2 is not parallel to its type-1 counterpart. To begin
with, we defined ≤∗

2 with a workable and reasonable type-2 analogy of asymp-
totic notion. We equated our notion of finitely many at type-2 to the compact
sets in some Baire-like topology [1] that was relatively defined by the concerned
functionals. As there is no type-2 equivalent of Church-Turing thesis, the com-
pactness in our definition is the key to computability of our construction. In [13]
we examined some alternative clocking schemes for OTM and defined a class of
limit functionals determined by some computable functions to serve as type-2

3

time bounds. With these type-2 time bounds, we were able to define an explicit
type-2 complexity class similar to (1) for a general type-2 complexity theory.
Unlike many other complexity theorems, the speed-up theorems do not need a
precisely defined complexity classes. We thus skip details regarding our explicit
type-2 complexity classes. However, the asymptotic notion is still indispensable
in the present paper. We formalize the notion as follows. Let F denote the set
of finite domain functions over natural numbers, i.e., σ ∈ F iff dom(σ) ⊂ N and
card(σ) ∈ N. Given F : T ×N → N, let F (f, x) ↓= y denote the case that F is
defined at (f, x) and its value is y.

Definition 1. Let F : T ×N → N and (σ, x) ∈ F ×N. We say that (σ, x) is a
locking fragment of F if and only if

∃y ∈ N ∀f ∈ T [
σ ⊂ f ⇒ F (f, x) ↓= y

]
.

Also, we say that (σ, x) is a minimal locking fragment of F if (σ, x) is a locking
fragment of F and, for every τ ∈ F with τ ⊂ σ, (τ, x) is not a locking fragment of
F . Clearly, if F is total and computable, then for every (f, x) ∈ T ×N, there must
exist a unique σ ∈ F with σ ⊂ f such that (σ, x) is a minimal locking fragment
of F . It is also clear that, in general, whether of not (σ, x) is a minimal locking
fragment of F cannot be effectively decided. For any σ ∈ F , let ((σ)) be the set
of total extensions of σ, i.e., ((σ)) = {f ∈ T

∣∣ σ ⊂ f}. Also, if (σ, x) ∈ T ×N,
let ((σ, x)) = {(f, x)

∣∣ f ∈ ((σ))}. We observe that, ((σ1)) ∩ ((σ2)) = ((σ1 ∪ σ2))
if σ1 and σ2 are consistent; otherwise, ((σ1)) ∩ ((σ2)) = ∅. The union operation
((σ1)) ∪ ((σ2)) is conventional. Given any f, g ∈ T , it is clear that, if f 6= g, then
there exist σ ⊂ f, τ ⊂ g, and k ∈ dom(σ) ∩ dom(τ) such that σ(k) 6= τ(k). In
stead of taking every ((σ, x)) with σ ∈ F as the basic open set3, we consider only
those that are related to the concerned functionals as follows.

Definition 2. Given any continuous functionals, F1 and F2, let T(F1, F2) de-
note the topology induced from T × N by F1 and F2, where the basic open sets
are defined as follows: ((σ, a)) is a basic open set of T(F1, F2) if and only if, for
some (f, a) ∈ T ×N, (σ1, a) and (σ3, a) are the minimal locking fragments of
F1 and F2, respectively, and ((σ, a)) = ((σ1, a)) ∩ ((σ2, a)).

Note that, in the definition above, since ((σ, a)) = ((σ1, a))∩((σ2, a)) = ((σ1∪σ2, a))
we have that if ((σ, a)) is a basic open set of T(F1, F2), then (σ, a) must be a
locking fragment of both F1 and F2. Now, we are in a position to define our
type-2 almost-everywhere relation.

Definition 3. Let F1, F2 : T ×N → N be continuous. Define

F1 ≤∗
2 F2 if and only if X[F1≤F2] is co-compact in T(F1, F2).

The complement of X[F1≤F2] is X[F1>F2]. The set X[F1>F2] is called the excep-
tional set of F1 ≤∗

2 F2, i.e., (f, a) ∈ X[F1>F2] iff F1(f, a) > F2(f, a).

3 This will form the product topology T×N, where T is the Baire topology and N the
discrete topology on N.

4

3 Lifting Speed-up Theorems to Type-2

Since type-1 computations are just a special case of type-2 computations, the
speedable function constructed for the original speed-up theorem can be seen as
a type-2 functional that just does not make any oracle queries. In other words,
as long as the concerned complexity measure satisfies Blum’s two axioms, the
proof of the original speed-up theorem should remain valid at type-2. Clearly,
our standard complexity measure 〈Φ̂i〉, the number of steps the OTM performs,
does satisfy Blum’s two axioms. However, we observe that oracle queries in
type-2 computation have introduced some difficulties when we attempt a direct
translation of the original proof. Recall that the original construction of the
speedable function is based on the cancelation on some programs when their run
times fall into certain ranges. When we directly lift the construction to type-2,
we note that there are cases in which the oracle queries may be used to slow down
or speed up the computation in such a way the programs can escape from being
canceled. Note that the proofs of the Union Theorem and Gap Theorem do not
involve the cancelation but directly construct time bounds and let the definition
of the complexity class take care of the rest. Unfortunately, one can easily show
that there are functionals that always make unnecessary oracle queries. Consider
functional F : T ×N → N defined by,

F (f, x) =
{

f(0) + 1 if ϕx(x) ↓ in f(0) steps;
0 otherwise. (2)

Clearly, F is computable and total. Fix any a such that, ϕa(a) ↑. Then, on in-
put (f, a), the value of f(0) only affects the speed of computing F (f, a). Thus,
F (f, a) = 0 for any f ∈ T , and hence (∅, a) is the minimal locking fragment of F
on (f, a). That means any queries made during the computation of F on (f, a)
are unnecessary. Thus, if there were an OTM that would not make any unnec-
essary queries for F , one could modify such OTM to solve the halting problem,
which is impossible. However, the answer to the query, while has nothing to do
with the final value, does affect the speed of the machine to halt. The smaller
the value of f(0) is, the sooner the computation halts. In fact, it is easy to con-
struct computable functionals that make unnecessary queries on all inputs, and
moreover, the number of unnecessary queries can be arbitrarily large. Such kind
of unnecessary but speed-affecting queries is the problem for us to get around in
lifting the speed-up theorems into type-2.

It is clear that our ϕ̂-programming system for OTM can be used to code the
entire class of type-1 computable functions. Thus, the speedable function con-
structed in the original speed-up theorem can be coded in our ϕ̂-programming
system. To that speedable function, any queries made during the course of com-
putation are unnecessary. However, as we have seen, unnecessary queries may
affect the computational time. Therefore, we cannot simply cancel those ϕ̂-
programs that make oracle queries. Moreover, if we intuitively enumerate all
possible queries in our construction, we face another difficulty in trying to make
our speedable functional total, because we cannot decide whether a query is

5

necessary or not; thus our construction will tend to be fooled by infinitely many
unnecessary queries and fail to converge. Fortunately, we will see that our notion
of ≤∗

2 defined by Definition 3 based on the compactness of the relative topologies
(Definition 2) resolves this problem automatically and easily.

4 Type-2 Speed-up Theorems

Type-2 speed-up theorems vary with the nature of the speed-up factors that can
be either type-1 or type-2. For type-3 speed-up factors, the theorem becomes a
type-2 analog of the operator speed-up theorem, and we will argue that there is
no such theorem. From Theorem 2 (the operator speed-up theorem) we immedi-
ately have the following corollary, in which we replace the operator Θ : T → T
by a functional R : T ×N → N.

Corollary 1. For any computable functional R : T × N → N, there exists a
recursive function f such that,

∀ i : ϕi = f ∃j : ϕj = f
∞
∀ x[R(Φj , x) ≤ Φi(x)].

However, this corollary is of no interest. Our goal is to construct a type-2 speed-
able functional using our programming system 〈ϕ̂i〉i∈N for OTM. We are inter-
ested in the following two theorems.

Theorem 3. For any recursive function r : N → N, there exists a computable
functional Fr : T ×N → N such that,

∀ i : ϕ̂i = Fr ∃j : ϕ̂j = Fr [r ◦ Φ̂j ≤∗
2 Φ̂i].

Theorem 4 (Type-2 Speed-up Theorem). For any computable functional
R : T ×N×N → N, there exists a computable functional FR : T ×N → N such
that,

∀ i : ϕ̂i = FR ∃j : ϕ̂j = FR [λf, x.R(f, x, Φ̂j(f, x)) ≤∗
2 Φ̂i].

Theorem 3 and Theorem 4 are lifted from Theorem 1 and Theorem 2, re-
spectively. Note that since Theorem 3 is a special case of Theorem 4, we rather
consider Theorem 4 as our type-2 speed-up theorem. Instead of proving Theorem
4 directly, we prove a simpler result of Theorem 3. The idea can be applied to
prove Theorem 4.

Consider Theorem 3. We observe that Fr = ϕ̂i = ϕ̂j . By Definition 3, the
relative topology for the type-2 relation, r ◦ Φ̂j ≤∗

2 Φ̂i, is

T(r ◦ Φ̂j , Φ̂i) = T(r ◦ ϕ̂j , ϕ̂j) = T(ϕ̂j) = T(ϕ̂i) = T(Fr).

Thus, if we construct Fr with (∅, x) as its minimal locking fragment for every
x ∈ N, then the relative topology for ≤∗

2 in the theorem is the coarsest one, i.e.,
the topology with basic open sets: ((∅, 0)), ((∅, 1)), Our idea is that: given any
S ⊂ T ×N with S being noncompact in the topology T(Fr), we then must have

6

that the type-0 component of the elements of S has infinitely many different
values. If a ϕ̂-program i needs to be canceled, we thus have infinitely many
chances to do so on some type-0 inputs. We can therefore ignore the effects of the
type-1 input in the computation. In other words, it is not necessary to introduce
another parameter for the type-1 argument when defining the cancelation sets.

This wishful thinking, however, is problematic in the corresponding type-
2 pseudo-speed-up theorem. Because, for every ϕ̂-program i for Fr, its pseudo
sped-up version, ϕ̂-program j, does not exactly compute ϕ̂i on some finitely
many type-0 inputs, and hence ϕ̂i and ϕ̂j may define two different topologies.
Thus, if we ignore the effect of the type-1 argument, the almost everywhere
relation r ◦ Φ̂j ≤∗

2 Φ̂i may fail in topology T(ϕ̂i, ϕ̂j). To fix this problem, we
introduce a weaker type-2 pseudo-speed-up theorem, in which the compactness
is not considered. The theorem in weaker in a sense that we do not use the type-
2 almost everywhere relation. Nevertheless, this weaker type-2 pseudo-speed-up
theorem will be sufficient for our proof of Theorem 3.

Theorem 5 (Type-2 Pseudo-Speed-up Theorem). For any recursive func-
tion function r : N → N, there exists a computable functional Fr : T ×N → N
such that, for every ϕ̂-program i for Fr, there is another ϕ̂-program j such that,

∞
∀ x ∈ N ∀ f ∈ T [(ϕ̂j(f, x) = Fr(f, x)) ∧ (Φ̂i(f, x) > r ◦ Φ̂j(f, x))].

Due to the space constraints, detailed arguments for this pseudo-speed-up the-
orem are presented in Appendix B.

Proof of Theorem 3: According to the construction of ϕ̂e in Theorem 5, for
every (f, x) ∈ T ×N, ϕ̂e(0, f, x) = ϕ̂e(0, f0, x), where f0 = λx.0. It follows that
(∅, x) is the minimal locking fragment of ϕ̂s(e,0) on every (f, x) ∈ T ×N. Let
ϕ̂i = ϕ̂s(e,0) and j = s(e, i + 1). Note that ϕ̂i =∗

2 ϕ̂j and r ◦ Φ̂j ≤∗
2 Φ̂i does not

hold in general because ((∅, x)) may not be a basic open set for some x. Consider
the following exception set

E =
{
(f, x)

∣∣ ϕ̂i(f, x) 6= ϕ̂j(f, x)
}

.

Although E may not be compact in topology T(ϕ̂i, ϕ̂j), {x|(f, x) ∈ E} must be
finite. Thus, we can have a patched ϕ̂-program j′ such that the program will
search a loop-up table if the type-0 argument is in {x|(f, x) ∈ E}. In such a
way, the type-1 input will not affect the result, and hence the minimal locking
fragment becomes (∅, x). On the other hand, if type-0 argument x 6∈ {x|(f, x) ∈
E}, then ϕ̂-program j′ starts running ϕ̂-program j. Similarly, the exception set

E′ =
{

(f, x)
∣∣ r ◦ Φ̂j(f, x) > Φ̂i(f, x)

}

has {x|(f, x) ∈ E′} finite. Consider the above patched ϕ̂-program, j′. The ex-
ception set

E′′ =
{

(f, x)
∣∣ r ◦ Φ̂j′(f, x) > Φ̂i(f, x)

}

7

must have {x|(f, x) ∈ E′′} finite. Therefore, E′′ is compact in the relative topol-
ogy T(ϕ̂i, ϕ̂j′), because ϕ̂i = ϕ̂j′ and, for every x ∈ N, (∅, x) is the only basic
open set in T(ϕ̂i, ϕ̂j′).

Finally, we shall discuss the case that there may exist some best ϕ̂-program
for ϕ̂s(e,0) using some unnecessary queries to escape from being canceled. This is
possible because we replace the actual type-1 input by f0 for every ϕ̂-program,
and hence we do not know the program’s behavior on actual f ∈ T . Clearly,
by Claim 6 in the proof of Theorem 5, this problem can be ignored, because
any program that will make any query on some inputs does not compute our
speedable functional. This completes the proof of Theorem 3. ¤

5 Type-2 Operator Anti-speed-up Theorem

In the previous section we established two speed-up theorems. The speed-up
factor in Theorem 3 is a type-1 function and and the proof is directly modified
from a proof for the original speed-up theorem. In Theorem 4 we consider type-
2 speed-up factors and it is lifted from the original operator speed-up theorem.
In this section we consider a type-2 analog of the operator speed-up theorem,
namely, we will try to explore a speed-up phenomenon when the speed-up factor
is type-3. Clearly, a proof to such theorem needs a general type-2 s-m-n and a
type-2 recursion theorem, which we don’t have. We shall prove that the type-2
analog of the operator speed-up theorem does not exist.

By “an effective type-2 operator” we mean a computable type-3 functional
[11] of type (T ×N → N) → (T ×N → N) with inputs restricted to computable
total type-2 functionals. Thus, we can think up that an effective type-2 operator
is given by a ϕ̂-program that takes a total ϕ̂-program as its input and outputs
another total ϕ̂-program. Our next theorem asserts that there is an effective
type-2 operator Θ̂ such that, for every total ϕ̂-program e, there is no Θ̂-sped up
version for e. In other words, the Θ̂-best programs always exist. Our theorem is
stronger than a direct negation of the operator speed-up theorem in the sense
that we claim that every ϕ̂-program is a Θ̂-best ϕ̂-program.

Recall Definition 3 for ≤∗
2, the following type-2 quantifiers use the same

idea of compactness. For continuous functionals F, G : T × N → N, we have
∞
∀ 2 (f, x)[F (f, x) ≤ G(f, x)] if and only if {(f, x)

∣∣ F (f, x) ≤ G(f, x)} is compact

in T(F,G). Similarly, we say that
∞
∃ 2 (f, x)[F (f, x) ≤ G(f, x)] if and only if

{(f, x)
∣∣ F (f, x) ≤ G(f, x)} is not compact in T(F, G). One can verify that

F ≤∗
2 G ⇐⇒ ∞

∀ 2 (f, x)[F (f, x) ≤ G(f, x)]

⇐⇒ ¬ ∞
∃ 2 (f, x)[F (f, x) > G(f, x)].

When the concerned functionals F and G are clear from the context, we simply
read

∞
∀ 2 (f, x) as “for all (f, x) except those in a compact set such that”, and

∞
∃ 2 (f, x) as “there exists a noncompact set such that, for all (f, x) in the set.”,
where compact is understood as T(F, G)-compact.

8

Theorem 6 (Type-2 Operator Anti-Speed-up Theorem). There is a type-
2 effective operator Θ̂ : (T × N → N) → (T × N → N) such that, for every
computable functional, F : T ×N → N, we have

∀i : ϕ̂i = F ∀j : ϕ̂j = F
∞
∃ 2 (f, x)[Θ̂(Φ̂j)(f, x) > Φ̂i(f, x)].

Proof: Define Θ̂ : (T ×N → N) → (T ×N → N) by

Θ̂(F)(f, x) = f(2F (f,x)+1).

Clearly, such Θ̂ is a type-2 effective operator. Fix any computable F : T ×
N → N. Also, fix a ϕ̂-program i for F . By contradiction, suppose that j is a
Θ̂-sped-up version of i, i.e., Θ̂(Φ̂j) ≤∗

2 Φ̂i. If so, for all but finitely many x ∈ N
such that, for every f ∈ T , we have

Θ(Φ̂j)(f, x) ≤ Φ̂i(f, x).

Fix such x and f . By the definition of Θ̂ and our assumption, we have

f(2bΦj(f,x)+1) ≤ Φ̂i(f, x).

Since there is no such query f(2bΦj(f,x)+1) =? during the course of the com-
putation of Φ̂j(f, x), it follows that the value of f at 2bΦj(f,x)+1 has no effect
on the value of Φ̂j(f, x). Therefore, if f(2bΦj(f,x)+1) is sufficiently large, then
Θ̂(Φ̂j)(f, x) > Φ̂i(f, x). This contradicts our assumption. ¤

Corollary 2. There is a type-2 effective operator Θ̂ : (T ×N → N) → (T ×N →
N) such that, for all computable F : T ×N → N, we have

∃i : ϕ̂i = F ∀j : ϕ̂j = F
∞
∃ 2 (f, x)[Θ̂(Φ̂j)(f, x) > Φ̂i(f, x)].

It is clear that Corollary 2 follows Theorem 6 immediately. Note that the corol-
lary is the direct negation of the operator speed-up theorem.

6 Conclusion

In spite of the fact that the speed of an OTM is interfered by the oracle queries,
our investigation shows that the speed-up phenomena indeed exist in type-2
computation as long as the complexity measure satisfies Blum’s two axioms.
However, the phenomena disappear in higher-typed computation after type-2.
We have a strong belief that our investigation has completed the study of speed-
up phenomena along the classical formulation of computational complexity, i.e.,
Blum’s complexity measure. Nevertheless, since the oracle-query is such a special
and unique complexity measure that is seen only at type-2, we speculate that
such complexity can provide a new prospect to look at the speed-up phenomena
at type-2. Apparently, query-complexity fails to meet Blum’s two axioms, and
hence a new approach is needed in understanding the concept of query-optimum
programs. It would be interesting to take up the speculation in this direction.

9

References

1. S. Abramsky, Dov M. Gabbay, and T.S.E. Maibaum, editors. Handbook of Logic
in Computer Science. Oxford University Press, 1992. Background: Mathematical
Structures.

2. Manuel Blum. A machine-independent theory of the complexity of recursive func-
tions. Journal of the ACM, 14(2):322–336, 1967.

3. Manuel Blum. On effective procedures for speeding up algorithms. Journal of the
ACM, 18(2):290–305, 1971.

4. Critian Calude. Theories of Computational Complexity. Number 35 in Annals of
Discrete Mathematics. North-Holland, Elsevier Science Publisher, B.V., 1988.

5. Stephen A. Cook. Computability and complexity of higher type functions. In Logic
from Computer Science, pages 51–72. Springer-Verlag, 1991.

6. Nigel Cutland. Computability: An introduction to recursive function theory. Cam-
bridge, New York, 1980.

7. Martin Davis, editor. The Undecidable. Raven Press, New York, 1965.
8. Kurt Gödel. Über die länge der beweise. Ergebnisse eines Math. Kolloquiums,

7:23–24, 1936. Translation in [7], pages 82-83, “On the length of proofs.”.
9. J. Hartmanis and R. E. Stearns. On the computational complexity of algorithms.

Transitions of the American Mathematics Society, pages 285–306, May 1965.
10. Bruce M. Kapron and Stephen A. Cook. A new characterization of type 2 feasi-

bility. SIAM Journal on Computing, 25:117–132, 1996.
11. Steve C. Kleene. Turing-machine computable functionals of finite types II. Pro-

ceedings of London Mathematical Society, 12:245–258, 1962.
12. Chung-Chih Li. Asymptotic behaviors of type-2 algorithms and induced baire

topologies. In Proceedings of the Third International Conference on Theoretical
Computer Science, pages 471–484, Toulouse, France, August 2004.

13. Chung-Chih Li. Clocking type-2 computation in the unit cost model. In Proceedings
of Computability in Europe: Logical Approach to Computational Barriers, pages
182–192, Swansea, UK, 2006. Report# CSR 7-2006.

14. Chung-Chih Li and James S. Royer. On type-2 complexity classes: Preliminary
report. pages 123–138, May 2001.

15. A. R. Meyer and P. C. Fischer. Computational speed-up by effective operators.
The Journal of Symbolic Logic, 37:55–68, 1972.

16. Hartley Rogers, Jr. Theory of Recursive Functions and Effective Computability.
McGraw-Hill, 1967. First paperback edition published by MIT Press in 1987.

17. James S. Royer. Semantics vs. syntax vs. computations: Machine models of type-2
polynomial-time bounded functionals. Journal of Computer and System Science,
54:424–436, 1997.

18. Joel I. Seiferas. Machine-independent complexity theory. In J. van Leeuwen, edi-
tor, Handbook of Theoretical Computer Science, volume A, pages 163–186. North-
Holland, Elsevier Science Publisher, B.V., 1990. MIT press for paperback edition.

19. Anil Seth. Complexity theory of higher type functionals. Ph.d. dissertation, Uni-
versity of Bombay, 1994.

20. P. Van Emde Boas. Ten years of speed-up. Proceedings of the Fourth Symposium
Mathematical Foundations of Computer Science 1975, pages 13–29, 1975. Lecture
Notes in Computer Science.

21. Klaus Wagner and Gerd Wechsung. Computational Complexity. Mathematics and
its applications. D. Reidel Publishing Company, Dordrecht, 1985.

10

Appendix

A Proof of The Speed-up Theorem

We sketch the original proof of the Speed-up Theorem that has been customized
so that we can easily lift it into a type-2 analog. A full version of the proof can
be found in any of [2, 3, 20, 6, 21, 4, 18]. We start with an intermediate theorem
known as “Pseudo-Speed-up Theorem.”

Theorem 7 (Pseudo-Speed-up Theorem). Let r : N → N be recursive.
There exists a recursive function fr : N → N such that,

∀ i : ϕi = fr∃j : ϕj =∗ fr

∞
∀ x[Φi(x) > r ◦ Φj(x)].

Fix any recursive function r : N → N. Let s be an s-1-1 function such that,
for all e, u, x ∈ N, ϕs(e,u)(x) = ϕe(u, x). We shall construct, by the recursion
theorem, a ϕ-program e such that,

a) ϕe : N×N → N,
b) for every u ∈ N, for all but finitely many x ∈ N, ϕe(0, x) = ϕe(u, x), and
c) for every i ∈ N, if ϕi = ϕs(e,0), then ϕi =∗ ϕs(e,i+1) and r ◦ Φs(e,i+1) <∗ Φi.

Given such a ϕ-program e, the speedable recursive function fr is the function
computed by the ϕ-program s(e, 0), i.e., λx.ϕe(0, x), and, for each ϕ-program
i for fr, s(e, i + 1) is a sped-up finite variant of the ϕ-program i. The theorem
is called the “Pseudo” Speed-up Theorem because s(e, i + 1) is not an exact
sped-up version of fr but just computes fr almost everywhere.

We maintain a global cancelation set Cu,x for each u, x ∈ N. The cancelation
set, Cu,x, determines the value of ϕe(u, x). Cu,x is defined recursively based on:

1. The previously defined sets: Cu,u, Cu,u+1, . . . , Cu,x−1, and
2. the cost of computing each of ϕs(e,u+1)(x), ϕs(e,u+2)(x), . . . , ϕs(e,x)(x).

Figure 1 shows the dependence of Cu,x on these prior sets and run times.
Precisely, for each u, x ∈ N, ϕe(u, x) and Cu,x are defined as follows.

a) If x ≤ u, then set Cu,x = ∅ and ϕe(u, x) = 1.
b) If x > u, then set ϕe(u, x) = 1 + max({ϕi(x) | i ∈ Cu,x}), where

Cu,x =
{

i

∣∣∣∣
u ≤ i < x and i 6∈ Cu,u ∪ Cu,u+1 ∪ · · · ∪ Cu,x−1

and Φi(x) ≤ r ◦ Φs(e,i+1)(x)

}
.

Claims:

1. ϕe is total.
2. For every u, x ∈ N, Cu,x = C0,x ∩ {u, u + 1, . . . , x− 1}.
3. For every u, x1, x2 ∈ N, if x1 6= x2, then Cu,x1 6= Cu,x2 .
4. For every u ∈ N, for all but finitely many x ∈ N, ϕe(0, x) = ϕe(u, x).

11

6

x

- u¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡¡µ

x = u

x ≤ u;

Cu,x = ∅; ϕe(u, x) = 1

dCu,x

6rCu,x−1

6rCu,x−2

rCu,u

r
6

Cu,u+1 6
r

r
Φe(x, x)

¾rΦe(x− 1, x)r¾Φe(u + 1, x)r¾
Φe(u + 2, x)

Φe(u, x)

Fig. 1. Construction of Cu,x

5. For every i ∈ N, if ϕi computes ϕs(e,0), then ϕi =∗ ϕs(e,i+1) and there exists
n0 ∈ N such that, for every x ≥ n0, we have Φi(x) > r ◦ Φs(e,i+1)(x).

Proofs of the Claims:

1. For x ≤ u, ϕe(u, x) and Cu,x are defined to be 1 and ∅, respective. For
x > u, Figure 1 shows that every such point is well defined based on some
finite previously defined points and cancelation sets.

2. We prove this claim by double induction on u and x as follows.

Basis: Clearly, if x = 0, then for every u ∈ N, Cu,0 = C0,0 ∩ ∅ = ∅.
Hypothesis: Fix any n ∈ N. Assume that if x ≤ n, then for every u ∈ N,
Cu,x = C0,x ∩ {u, u + 1, . . . , x− 1}.
Inductive step: We argue that, when x = n+1, then Cu,x = C0,x∩{u, u+
1, . . . , x− 1} for each u ∈ N. Without loss of generality, we can assume that
u < n + 1, for the u ≥ n + 1 case is trivial. Thus, we argue that,

∀u < n + 1[Cu,n+1 = C0,n+1 ∩ {u, u + 1, . . . , n}].

12

Given i ∈ Cu,n+1, we have:

i ∈ Cu,n+1 ⇐⇒ i ∈ {u, u + 1, . . . , n},
i 6∈ Cu,u ∪ Cu,u+1 ∪ · · · ∪ Cu,n, and
Φi(n + 1) ≤ r ◦ Φs(e,i+1)(n + 1)

⇐⇒ i ∈ {u, u + 1, . . . , n},
i ∈ {0, 1, . . . , u, u + 1, . . . , n},
i 6∈ Cu,u ∪ Cu,u+1 ∪ · · · ∪ Cu,n, and
Φi(n + 1) ≤ r ◦ Φs(e,i+1)(n + 1)

⇐⇒ i ∈ {u, u + 1, . . . , n},
i ∈ {0, 1, . . . , u, u + 1, . . . , n},

by hypothesis i 6∈ (C0,u ∪ C0,u+1 ∪ · · · ∪ C0,n) ∩ {u, u + 1, . . . , n− 1},
and Φi(n + 1) ≤ r ◦ Φs(e,i+1)(n + 1)

⇐⇒ i ∈ {u, u + 1, . . . , n} and i ∈ C0,n+1

⇐⇒ i ∈ C0,n+1 ∩ {u, u + 1, . . . , n}.
3. Let x1 6= x2. From the construction of the cancelation sets, it is clear that

i ∈ Cu,x1 ⇒ i 6∈ Cu,x2 and i ∈ Cu,x2 ⇒ i 6∈ Cu,x1 .
4. For every u, x ∈ N, the values of ϕe(0, x) and ϕe(u, x) are determined by

C0,x and Cu,x, respectively. By Claim 2, C0,x − Cu,x ⊆ {0, 1, . . . , u − 1}.
Thus, only indices in {0, 1, . . . , u− 1} may cause the difference between C0,x

and Cu,x. But, by Claim 3, each such index will be selected at most once
for some x. Thus, if x is sufficiently large, all indices in {0, 1, . . . , u− 1} will
have been canceled and will not be selected again, and hence C0,x = Cu,x.

5. Suppose that ϕi = ϕs(e,0). From Claim 4, we already have ϕi =∗ ϕs(e,i+1).
For the other part of this claim, we assume, by contradiction, there are in-
finitely many x such that, Φi(x) ≤ r◦Φs(e,i+1)(x). Then for some sufficiently
large a with a ≥ i, i will be selected into the cancelation set C0,a. Hence,
ϕi(a) 6= ϕs(e,0)(a). This is a contradiction.

This completes the proof the Pseudo-Speed-up Theorem. ¤
To obtain the Speed-up Theorem, we can patch the almost everywhere equal-

ity in the Pseudo-Speed-up Theorem by means of a finite table that stores the
exact values of the speedable function on those exceptional points. However,
the finite table cannot be uniformly constructed, and hence the proof of the
Speed-up Theorem is not constructive in this sense.4

B Proof of Type-2 Pseudo-Speed-up Theorem

Theorem (Type-2 Pseudo-Speed-up Theorem) For any recursive function
function r : N → N, there exists a computable functional Fr : T ×N → N such
4 A rather comprehensive discussion about the constructibility of the proof of the

Speed-up Theorem can be found in [20].

13

that, for every ϕ̂-program i for Fr, there is another ϕ̂-program j such that,

∞
∀ x ∈ N ∀ f ∈ T [(ϕ̂j(f, x) = Fr(f, x)) ∧ (Φ̂i(f, x) > r ◦ Φ̂j(f, x))].

Fix a recursive function r : N → N. With the s-m-n and recursion theorems
on the type-0 argument introduced, let s be an s-1-2 function such that, for
every e, u, x ∈ N and f ∈ T , ϕ̂s(e,u)(f, x) = ϕ̂e(u, f, x). We shall construct,
by the recursion theorem, a ϕ̂-program e that is similar to the ϕ-program in
Theorem 7, such that:

a) ϕ̂e : N× T ×N → N.
b) For every u ∈ N, there exists n0 ∈ N such that, for every x > n0 and f ∈ T ,

we have ϕ̂e(0, f, x) = ϕ̂e(u, f, x).
c) For every i ∈ N, if ϕ̂i computes ϕ̂s(e,0), then there exists n0 ∈ N such that,

if x ∈ N with x > n0, then for every f ∈ T , ϕ̂i(f, x) = ϕ̂s(e,i+1)(f, x) and
Φ̂i(f, x) > r ◦ Φ̂s(e,i+1)(f, x).

Clearly, such ϕ̂e witnesses our Type-2 Pseudo-Speed-up Theorem. Similarly, we
maintain a global cancelation set Cu,x for each u, x ∈ N, which is defined as
follows. Let f0 = λx.0. Suppose that u, x ∈ N and f ∈ T .

a) If x ≤ u, then let Cu,x = ∅ and ϕ̂e(u, f, x) = 1.
b) If x > u, then define Cu,x by:

Cu,x =

i

∣∣∣∣∣∣∣

u ≤ i < x and i 6∈ Cu,u ∪ Cu,u+1 ∪ · · · ∪ Cu,x−1 and
[

Φ̂i(f0, x) ≤ r ◦ Φ̂s(e,i+1)(f0, x) or the OTM, M̂i,
on (f0, x), makes at least one query in i steps

]

,

and define ϕ̂e(u, f, x) by:

ϕ̂e(u, f, x) = 1 + max({ϕ̂i(f0, x) | i ∈ Cu,x}). (3)

In addition to the five claims in the proof of Theorem 7, we have one more claims
to our construction. Consider the following six claims.

1. ϕ̂e is total on N× T ×N.
2. For every u, x ∈ N, Cu,x = C0,x ∩ {u, u + 1, . . . , x− 1}.
3. For every u, x1, x2 ∈ N, if x1 6= x2, then Cu,x1 6= Cu,x2 .
4. For every u ∈ N, for all but finitely many x ∈ N, and for every f ∈ T ,

ϕ̂e(0, f, x) = ϕ̂e(u, f, x).
5. For every i ∈ N, if ϕ̂i = ϕ̂s(e,0), then there exists n0 ∈ N such that, for every

x ∈ N with x ≥ n0 and for every f ∈ T , we have ϕ̂i(f, x) = ϕ̂s(e,i+1)(f, x)
and Φ̂i(f, x) > r ◦ Φ̂s(e,i+1)(f, x).

6. If i is a ϕ̂-program for ϕ̂s(e,0), then, for all but finitely many x ∈ N and for
all f ∈ T , the OTM M̂i, on (f, x), does not make any oracle query.

14

For claim 1, it is clear that the extra clause

“the OTM, M̂i, on (f0, x), makes at least one query in i steps”

in defining Cu,x is recursively decidable, and hence ϕ̂e is total.
Claims 2, 3, 4, and 5 can be proved by exactly the same arguments for

Theorem 7.
For Claim 6, suppose ϕ̂i = ϕ̂s(e,0) and, by contradiction, there are infinitely

many x ∈ N such that, for some f ∈ T , the OTM, M̂i, on (f, x), makes some
queries to the oracle. Let a be such x. Then, M̂i, on (f0, a), must also make
some queries to the oracle. Moreover, there are infinitely many ϕ̂-programs that
behavior exactly the same as i does. Let j be a such ϕ̂-program and sufficiently
large. Thus, M̂j , on (f0, a), will make some queries in j steps and will be selected
into C0,a. Therefore, j and i are not ϕ̂-program for ϕ̂s(e,0). ¤

15

