
On Simple Linear String Equations, Sections 2 ∼ 5

Chung-Chih Li

LATEX at 22:28, September 12, 2009

Abstract

1 Introduction

2 Motivating Examples
I just rewrite the 1st
paragraph

Notation
xr
′→′′ [0, 16]... not yet

defined at this point.

We use Java Web application BadLogin as an example that motivates our work. The
same example and pattern are used in our previous work [7] but the proposed informal
algorithm in the same paper cannot generate all possible strings, while our new theory
to be introduced in this paper can.

....

3 A String Equation System

In this section we define some necessary notations and terminologies that will be used
throughout this paper. Let N denote the set of natural numbers and Σ a finite set of
alphabets. Let R be the set of regular expressions over Σ. If r ∈ R, let L(r) be the
language represented by r. For simplicity, we abuse the notation by writing ω ∈ r
when the context is clear that r is a regular expression.

If ω ∈ Σ∗, we say that ω is a word (or equivalently, a string constant). We assume
that there are infinitely many distinguishable variables for string constants, and let
this set of variables be denoted by V . Intuitively, a string expression over Σ is a
regular expression over Σ with some occurrences of variables in V and [i.j] and r → ω
operators.

3.1 String Equations

We first define string expressions in the following definition.

On Simple Linear String Equations, Sections 2 ∼ 5

Definition 1 Let E denote the set of string expressions over Σ defined as follows:

1. If x ∈ (V ∪R), then x ∈ E.
2. If µ, ν ∈ E, then µν ∈ E.
3. If µ ∈ E, then µ[i, j] ∈ E for all i, j ∈ N with i ≤ j.
4. If µ ∈ R, then µr→ω, µ−r→ω, µ+

r→ω ∈ E for all r ∈ R and ω ∈ Σ∗.
5. Nothing else except those described above is in E.

Note that we can extend E by using recursive definitions for 4 above, i.e., let the
condition be µ ∈ E. However, we restrict µ to R for simplicity reason; in particular,
we want to keep our notations down when we come to define the semantic. By
convention, we use P(x1/s1.x2/s2,...,xn/sn) to denote the object obtained by replacing
every occurrence of x1, x2, . . . xn in P with s1, s2, . . . sn, respectively. However, when
P is a string, how to identify the occurrences of x1 is ambiguous. This motivates
us to define a precise operation semantics for string substitution. We first define the
mapping function, φρ, as follows.

Definition 2 Suppose ρ = {(x1, s1), (x2, s2), . . . , (xn, sn)} ⊆ (V ∪ R) × R such that,
with 1 ≤ i, j ≤ n, (i) ρ is single-valued, i.e., i = j iff xi = xj; and (ii) ρ is consistent,
i.e., if xi ∈ R, then L(si) ⊆ L(xi). Then, we define the mapping function with respect
to ρ by φρ : E → E such that, for every µ ∈ E, φρ(µ) = µ(x1/s1.x2/s2,...,xn/sn).

In the definition above, being single-valued is a standard requirement to have
the mapping function well-defined, and being consistent forces the replacement not
to replace a regular expression by an arbitrary string but confine the substitute
within L(r). Consider the following example. Let x ∈ V , a, b, c ∈ Σ, and ρ =
{(x, ab), ((abc)∗, abcabc)}. We have φρ(x(abc)∗) = ababcabc. Note that, if ρ = {(x, ab),
(abc∗, abcabc)}, then, according to the restriction, ρ cannot define a mapping function
because abcabc 6∈ L(abc∗).

Definition 3 A string equation is denoted by µ ≡ ν with µ, ν ∈ E. We say that
ρ ⊆ (V ∪R)×R is a solution to the equation iff φρ(µ) = φρ(ν).

We can directly extend the definition above to a string equation system that is
simply a finite set of string equations. We say that ρ is a solution to a system iff ρ is
a solution to every string equation in the system.

Let x, y ∈ V , a, b, c ∈ Σ, and ρ = {(x, c), (ab∗, ab), (y, b)}. One can verify that ρ is
a solution to string equation xab∗ ≡ cay, since φρ(xab∗) = φρ(cay) = cab.

Definition 3 seems intuitively understandable. The problem is, however, do we
have a clear semantic to say that r1 ≡ r2 iff φρ(r1) = φρ(r2)? For example, consider
a∗ ≡ a∗a∗ and ρ = {(a∗, b)}. Do we consider φρ(a∗) = φρ(a∗a∗)? Using the definitions
above directly, we have φρ(a∗) = b 6= bb = φρ(a∗a∗). This discrepancy shall be
resolved by precise semantics of string substitutions.

LATEX at 22:28, September 12, 2009 c© Chung-Chih Li P-2/7

On Simple Linear String Equations, Sections 2 ∼ 5

3.2 Semantics

In this section we define the semantics for some notations we just introduced. For
s ∈ Σ∗, let s[i, j] denote the substrings of r starting from index i up to index j − 1.
Note that if j − 1 is bigger than the last index of s, then s[i, j] is the substring from
index i to the end of s. If r ∈ R, then let r[i, j] = {s[i, j] : s ∈ r}. For s, ω ∈ Σ∗ and
r ∈ R, Sr→ω denotes the set of all possible strings that can be obtained from s by
substituting ω for every occurrence of substring s ∈ L(r). Moreover, let s−r→ω denote
the string in sr→ω obtained with pure reluctant left-most pattern matching procedure,
and s+

r→ω with pure greedy left-most pattern matching procedure. Formally, we define
the three sets as follows:

Definition 4 Let s, ω ∈ Σ∗ and r ∈ R.

sr→ω =

{s} if s 6∈ Σ∗rΣ∗;

{νr→ωωµr→ω

∣∣ s = νβµ, β ∈ r} otherwise.

If sr→ω = {s}, then let s−r→ω = s+
r→ω = s; otherwise, define

• s−r→ω = νωµ−r→ω where s = νβµ such that, ν 6∈ Σ∗rΣ∗, β ∈ r, and for every
x, y, z, t with ν = xy and β = zt, if y 6= ε then yz 6∈ r and if
t 6= ε then z 6∈ r.

• s+
r→ω = νωµ+

r→ω where s = νβµ such that, ν 6∈ Σ∗rΣ∗, β ∈ r, and for every
x, y, z, t,m, n with ν = xy, β = zt, and µ = mn, if y 6= ε
then yz 6∈ r and if m 6= ε then yβm 6∈ r.

Note that sr→ω is a set of words but s−r→ω and s+
r→ω are words. Moreover, sr→ω

is declarative while s−r→ω and s+
r→ω are procedural as they are defined based on a

reluctant and a greedy procedures, respectively, with left-most pattern matching.
One can verify that s−r→ω and s+

r→ω are uniquely defined for any s, ω ∈ Σ∗ and r ∈ R.
Consider the following two examples. (i) If s = aaab, r = (aa|ab), and ω = c, then
sr→ω = {cc, acb}, and s−r→ω = s+

r→ω = cc. (ii) If s = aaa, r = a+, and ω = b, then
sr→ω = {b, bb, bbb}, s−r→ω = bbb, and s+

r→ω = b.

We can easily extend s to regular expressions as follows.

Definition 5 Let S, r ∈ R and ω ∈ Σ∗. Define (i) Sr→ω =
⋃

s∈S sr→ω, (ii) S−r→ω =
{s−r→ω : s ∈ S}, and (iii) S+

r→ω = {s+
r→ω : s ∈ S}.

4 Modeling String Replacements

In this section we provide a model for solving string expressions.

LATEX at 22:28, September 12, 2009 c© Chung-Chih Li P-3/7

On Simple Linear String Equations, Sections 2 ∼ 5

Finite State Transducers (FTS)

We first introduce a modified finite state machine called finite state transducer used
in [?] to recognize the regular relation for a phonological rule system, which we found
also very useful for our string replacements.

Definition 6 Let Σε denote Σ∪{ε}. A finite state transducer (FST) is an enhanced
two-taped nondeterministic finite state machine described by a quintuple (Σ, Q, q0, F, δ),
where Σ is the alphabet set, Q the set of states, q0 ∈ Q the initial state, F ⊆ Q the
set of final states, and δ is the transition function, which is a total function of type
Q× Σε × Σε → 2Q.

By convention, let the second and third arguments of the transition function come
from the current symbols on first and second tapes, respectively. It is easy to argue
that with an appropriate coding method, adding an additional input tape to the
standard finite state machine does not enhance the power of the machine to accept
more languages. What makes FST more powerful is to allow a transition based on
only one symbol from either one of the two tapes. For example, qj ∈ δ(qi, a, ε) means
that if the current symbol in the first input tape is a, the machine can transfer from
state qi to qj without reading (i.e., consuming) the current symbol in second tape. Let
L1 and L2 be two languages. If an FST, M , accepts (ω1, ω2) iff (ω1, ω2) ∈ L1 × L2,
we say that M recognizes the language pair (L1, L2), and is denoted by ML1×L2 .
It is straightforward to argue that, L1 and L2 are regular iff ML1×L2 exists. For
convenience, we can extend symbols to regular expressions for transitions to obtained
augmented AFST, denoted by AFST.

Definition 7 An augmented finite state transducer (AFST) is an FST (Σ, Q, q0, F, δ)
with the transition function augmented to type Q × R × R → 2Q, where R is the set
of regular expressions over Σ.

Note that, while we have tried to keep our setup as general as possible, we would
restrict the transition function of an AFST to the type of Q × R × Σ∗ → 2Q. In a
transition diagram, we label the arch from qi to qj for transition qj ∈ δ(qi, r, ω) by
“r : ω”. Now, we can use an AFST to model our declarative string replacement sr→ω

for any s ∈ Σ∗, r ∈ R, and ω ∈ Σ∗. Figure 1 shows the construction, which presents
an AFST that accepts (s : η) iff η ∈ sr→ω. In other words, given any two s, η ∈ Σ∗,
we can use the AFST to check if η is a string obtained from s by replacing every
occurrence of patterns in r with ω. We alternatively use FST and AFST for the time
being without loss of generality since it is clear that every AFST has an corresponding
FST to recognize the same language pair.

The AFST in Figure 1 uses nondeterminism to handle the declarative nature of
Sr→ω. It is known that the nondeterministic transducer (NFST) is more powerful
than the deterministic one (DFST), which differs with the well known fact that DFA

LATEX at 22:28, September 12, 2009 c© Chung-Chih Li P-4/7

On Simple Linear String Equations, Sections 2 ∼ 5

q1q0 q2
r :

t : t t = r

t : t

:

Figure 1: An AFST for sr→ω

and NFA are equivalent. However, since we restrict the languages for the second tape
to constant strings (words), we can manage our model to a deterministic one. Due
to the space constrains, we omit the detailed construction. Clearly, a deterministic
machine is much more convenient for implementation.

5 Solving Simple Linear String Equations

In this section we narrow down our scope to a kind of simplified liner string equations
called Simple Linear String Equations (SLSE). Compared to the general string equa-
tions given in Definition 3, SLSE is easy to solve and yet it will suffice to formulate, for
example, command injection security problems raised in many web applications. Our
approach is to break SLSE into several basic cases and then combine their solutions
to obtain the general solutions. We first define SLSE as follows.

Definition 8 A Simple Linear String Equations (SLSE) µ ≡ r is a string equation
such that µ ∈ E, r ∈ R provided that every string variable occurs at most once in µ.

Recall Definitions 2 and 3 and consider the following definition.

Definition 9 Let µ ≡ r be an SLSE. We say that ρ is a variable solution to µ ≡ r
iff ρ = τ ∩ (V ×R) and φρ(µ) = φτ (r) where τ is some solution to µ ≡ r.

Definition 9 rules out replacing a string/regular expression and restrict the re-
placement to variables only. This is a reasonable setup for some application such as
injection attack since the hacker can only alter the values for variables but never be
able to modify the code.

Definition 10 Let µ ≡ r be an SLSE and suppose string variable v occurs in µ. The
solution pool for v, denoted by sp(v), is defined as follows.

sp(v) = {ω ∣∣ (v, ω) ∈ ρ where ρ is a variable solution to µ ≡ r.}

LATEX at 22:28, September 12, 2009 c© Chung-Chih Li P-5/7

On Simple Linear String Equations, Sections 2 ∼ 5

It is clear that sp(v) must be a regular language. In the following discussion,
we will describe an algorithm that takes an SLSE as input and constructs as output
regular expressions that represent the solution pools for all string variables in the
equation.

5.1 Solving Basic Cases of SLSE

According to Definition 1, E is constructed recursively based on the atomic case
(rule 1) and three operations: concatenation (rule 2), substring (rule 3), and string
replacement (rule 4). Thus, solving an SLSE can be reduced to solving the four basic
cases. The atomic case is trivial. That is, for E ≡ r, if E ∈ R then the equation has
no variable solution (a general solution may exist but we do not discuss the case in
the present paper); if E = x and x ∈ V , then the solution pool of x is simply L(r).

Substring case: µ[i, j] ≡ r, where µ ∈ E and i, j ∈ N . The following equivalence
is straightforward by which we can remove a substring operator.

Equivalence 1 For any SLSE of the form µ[i, j] ≡ r where µ ∈ E, r ∈ R, and i, j ∈
N , ρ is a variable solution to µ[i, j] ≡ r iff ρ is a variable solution to µ ≡ Σir[i, j]Σ∗.

In the following easy example, we will see how to put Definitions 2, 3, 9, and 10 into
the picture. Consider SLSE x[2, 4] ≡ ab∗ where x ∈ V and a, b ∈ Σ. Using Equivalence
1, we obtain x = Σ2r[2, 4]Σ∗ and hence sp(x) = Σ2r[2, 4]Σ∗. Consider an arbitrary
word in sp(x), e.g., x = cc(ccabcc)[2, 4]ccc = ccabccc. Let τ = {(x, ccabccc), (ab∗, ab)}.
According to Definitions 2 and 3, the mapping function, φτ , is well-defined and τ is
a solution to x[2, 4] ≡ ab∗, since φτ (x[2, 4]) = ccabccc[2, 4] = ab = φτ (ab∗). According
to Definition 9, ρ = τ ∩(V ×R) = {(x, ccabccc)} is a variable solution to the equation.
Finally, according to Definition 10, ccabccc ∈ sp(x).

Concatenation case: µν ≡ r, where µ, ν ∈ E. The equivalence is obvious when
ν ∈ R. Consider xr1 ≡ r2 where x ∈ V and r1, r2 ∈ R. In this trivial case, x is simply
the (right) quotient of r2 with respect to r1, i.e., sp(x) = {ω ∣∣ ωη ∈ L(r2), η ∈ L(r1)}.
By convention, we denote the quotient of r2 with respect to r1 by r2/r1. We know
that if r1 and r2 are regular, so is r2/r1. Thus, we have the following equivalence.

Equivalence 2 For any SLSE of the form µr1 ≡ r2 where µ ∈ E and r1, r2 ∈ R, ρ
is a variable solution to µr1 ≡ r2 iff ρ is a variable solution to µ ≡ r2/r1.

For the general concatenation case, we can reduce it to the case in Equivalence 2
by using other equivalences first.

LATEX at 22:28, September 12, 2009 c© Chung-Chih Li P-6/7

On Simple Linear String Equations, Sections 2 ∼ 5

Replacement case: µr1→ω ≡ r2 where µ ∈ E, r1, r2 ∈ R, and ω ∈ Σ∗.

Consider the case µ = x with x ∈ V . According to the definition, a possible
solution to xr1→ω ≡ r2 is a word s ∈ Σ∗ such that sr1→ω ⊆ L(r2). Thus, sp(x) =
{s|sr1→ω ⊆ L(r2)}. Our goal is to construct an FST that accepts only (s : η) such
that η ∈ L(r2) and η is obtained from s by replacing every occurrence of patterns in
r1 with ω. In other words, we want an FST, denoted by Mr2

r1→ω, such that,

(s : η) ∈ L(Mr2
r1→ω) ⇐⇒ η ∈ sr1→ω ∩ L(r2).

It is clear that, if such FST exists, we have the following lemma to reduce our SLSE.

Lemma 1 Let x ∈ V . For any xr1→ω ≡ r2 where r1, r2 ∈ R and ω ∈ Σ∗, we have
sp(x) = {s|sr1→ω ⊆ L(r2)} = {s ∣∣ (s : η) ∈ L(Mr2

r1→ω) for some η}.

We fix some natation first. Given two FST’s M1 and M2, let M1||M2 denote a
FST such that,

L(M1||M2) = {(s : ω)
∣∣ (s : η) ∈M1 and (η : ω) ∈M2 for some η ∈ Σ∗}

Intuitively, M1||M2 pipes the contents of the second tape of M1 into the first tape
of M2, and simulates M1 and M2 in parallel. Thus, if we consider each FST
representing a regular relation [?], M1||M2 represents a relation composition, i.e.,
L1(M1||M2)L2 iff there is L′ such that L1M1L

′ and L′M2L2. The construction of
M1||M2 from given M1 and M2 can be found in [?, ?], which is similar to the stan-
dard construction of a DFA that accepts the intersection of two regular languages.
Due to the space constraints, we omit the details.

Mr2
r1→ω now can be constructed as follows. Let Mr2 denote the FST such that

(s : s) ∈ L(Mr2) iff s ∈ L(r2). Also, let Mr1→ω be the FST that models sr1→ω as
the one shown in Figure 1, i.e., (s : η) ∈ L(Mr1→ω) iff η ∈ sr1→ω. It is clear that
Mr2

r1→ω = Mr2 ||Mr1→ω. The equivalence below can be verified by Lemma 1 and a
straightforward substitution.

Equivalence 3 For any SLSE of the form µr1→ω ≡ r2 where µ ∈ E, r1, r2 ∈ R, and
ω ∈ Σ∗, ρ is a variable solution to µr1→ω ≡ r2 iff ρ is a variable solution to µ ≡ r
where r is sp(x) to xr1→ω ≡ r2.

LATEX at 22:28, September 12, 2009 c© Chung-Chih Li P-7/7

