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Query-Optimal Oracle Turing Machines for
Type-2 Computations

Chung-Chih Li

School of Information Technology
Illinois State University
Normal, IL 61790, USA

Abstract. With the notion of optimal programs defined in terms of
Blum’s complexity measure, the well known speed-up theorem states that
there exist computable functions that do not have optimal programs. For
type-2 computation, we argue that the same speed-up theorem can be
obtained as long as the complexity measure satisfies Blum’s complexity
measure under the Oracle Turing Machine model. In the present paper,
we consider the oracle query as a dynamic complexity measure. Since
the query complexity is not a Blum’s complexity measure, we have to
characterize the notions of optimal programs in a very different way. We
give three notions of query-optimal programs in different strength and
argue that the stronger the notion of query-optimal programs we define,
the more difficult to have query-optimal programs. In other words, with
a stronger definition of query-optimal programs, one can prove an easier
version of the speed-up theorem.

1 Introduction

Searching for the best algorithm to solve a concerned computable problem is
a primary task for computer scientists. However, the speed-up theorem tells
us that, theoretically, we cannot succeed on all problems. In fact, the speed-
up phenomena have been extensively studied by mathematicians for more than
a half century, which in logical form was first remarked by Gödel in terms of
the length of theorem proving [5, 6, 13]. Blum [1, 2] re-discovered the speed-up
phenomenon in the context of computational complexity.

Blum’s speed-up theorem is a result of his axiomatization of complexity mea-
sures. Fix a programming system for Turing machines and let ϕi denote the
function computed by the ith Turing machine and Φi denote the cost function
associated to it. Blum considers that dynamic complexity measures should meet
the following two requirements: for any i, x, m ∈ N, (i) ϕi is convergent on x
(denoted by ϕi(x) ↓) if and only if Φi is convergent on x (denoted by Φi(x) ↓)
and (ii) Φi(x) = m is effectively decidable. The two axioms have successfully
lifted the study of complexity theory to an abstract level with rich results that
are independent from any specific machine models. At type-1, the meaning of
“more efficient programs” is intuitive: For a computable function f , we say that
program j is more efficient than program i if ϕi = ϕj = f and for all but finitely



many x we have Φj(x) < Φi(x). Precisely, Blum [1, 2] formulates the speed-up
theorem as follows: For any recursive function r, there exists a recursive function
f such that

(∀ i : ϕi = f) (∃j : ϕj = f) (
∞
∀ x)

[
r(Φj(x)) ≤ Φi(x)

]
. (1)

There are many sources for detailed proofs and discussions regarding this curious
speed-up phenomenon, e.g., [1–4, 6, 11–14]. We shall skip all irrelevant details due
to the space constraints.

When we try to lift the complexity theory to type-2 computation, we want to
know whether or not the same speed-up phenomenon can be described in terms of
some complexity measures that are sensible in the context of type-2 computation.
Clearly, time and space remain meaningful in type-2 computation. Since time and
space are Blum’s complexity measures, we have not faced too many difficulties
in translating the original proofs of the speed-up theorem and its variants into
type-2 (see [9]). For query complexity, on the other hand, the two Blum’s axioms
fail. As a result, we can’t reuse the same concepts and techniques but develop
our new ones in order to investigate this specular speed-up phenomenon.

2 Type-2 Computation Using Oracle Turing Machines

In this section we will provide necessary notations for type-2 computation; de-
tailed discussion about the type-2 complexity theory can be found in [7–10]. We
consider natural numbers as type-0 objects and functions over natural numbers
as type-1 objects. For type-2 objects, they are functionals that take as inputs
and produce as outputs type-0 or type-1 objects. We consider objects of lower
type as special cases of higher type, i.e., type-0 ⊂ type-1 ⊂ type-2. Without loss
of generality we restrict our type-2 functionals to the standard type T ×N ⇀ N,
where T is the set of total functions and ⇀ means possibly partial.

We use the Oracle Turing Machine (OTM) as our standard computing for-
malism for type-2 computation. An OTM is a Turing machine equipped with a
function oracle. We say that a type-2 functional F : T ×N ⇀ N is computable
if there is an OTM that computes F as follows. Before the OTM begins to run,
the type-1 argument should be presented to the OTM as an oracle. Every OTM
has two extra tapes called query-tape and answer-tape for oracle queries and
oracle answers, respectively. During the course of the computation, the OTM
may enter a special state called query-state where the oracle will read the query
left on the query-tape and return its answer to the answer-tape. We can fix
a programming system 〈ϕ̂i〉i∈N for OTM’s and let M̂e denote the OTM with
index e that computes ϕ̂e.

Let F denote the set of finite functions over natural numbers, i.e., σ ∈ F iff
the domain of σ is a subset of N and its cardinality is in N. Given F : T ×N → N,
F (f, x) ↓= y denotes that F is defined at (f, x) and its value is y. Since if F is
computable, F must be continuous (i.e., compact and monotone), it follows that
if F (f, x) ↓= y, there must be σ ∈ F with σ ⊂ f such that for every extension

2



η of σ (i.e., σ ⊆ η), we have F (f, x) ↓= F (σ, x) ↓= F (η, x) ↓= y. We say that
(σ, x) and (η, x) are locking fragments of F on (f, x). For any σ ∈ F , let ((σ))
denote the set of total extensions of σ, i.e., ((σ)) = {f ∈ T

∣∣ σ ⊂ f}. Also, if
(σ, x) ∈ F ×N, let ((σ, x)) = {(f, x)

∣∣ f ∈ ((σ))}. If σ1 and σ2 are consistent, we
have ((σ1))∩((σ2)) = ((σ1∪σ2)); otherwise, ((σ1))∩((σ2)) = ∅. The union operation
((σ1)) ∪ ((σ2)) is conventional.

3 Query-optimal Programs

Only in type-2 computation can we use the number of queries made through-
out the course of the computation as a dynamic complexity measure. We are
interested in whether or not there is a query-optimal program for any given
type-2 computable functional; if there is not, can we have a speed-up theorem
in terms of query-complexity. It turns out that the query-complexity fails to
satisfy Blum’s two axioms. Consequently, the arguments in the original proof
of the speed-up theorem are no longer valid. We thus need a new approach to
understand this curious phenomenon. In this section we define a few alternative
notions of query-optimal programs. These notions must be sensible and intuitive.

3.1 Unnecessary Queries

We shall argue that some intuitive notions of query-optimal programs are not
flexible enough to derive interesting results. We say that an oracle query is
necessary if its answer returned from the oracle will affect the result of the
computation. Intuitively, a query-optimal program should be a program that
does not make any unnecessary queries. Unfortunately, this notion of query-
optimal programs is too strong. It is easy to argue that there are functionals
that always make unnecessary oracle queries. Consider the following functional
F : T ×N → N defined by,

F (f, x) =
{

f(0) + 1 if ϕx(x) ↓ in f(0) steps;
0 otherwise. (2)

Clearly, F is computable and total. Fix any a such that ϕa is diverged on a
(denoted by ϕa(a) ↑). Then, on input (f, a), the value of f(0) only affects the
speed of computing F (f, a). Thus, F (f, a) = 0 for any f ∈ T , and hence (∅, a) is
the minimal locking fragment of F on (f, a). That means any queries made during
the computation of F on (f, a) are unnecessary. By contradiction, if there were
an OTM that would not make any unnecessary queries for F , one could modify
such OTM to solve the halting problem, which is impossible. Therefore, the
type-2 functional defined in (2) can’t be computed by an OTM without making
unnecessary queries. From this example, it is clear that to require query-optimal
programs to be ones that do not make unnecessary queries is too restricted. We
will loose the requirements by allowing a small amount of unnecessary queries.
By “a small amount”, we means “a compact set” in some topology determined
by the concerned computation. We formalize our idea in the next subsection.
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3.2 Unnecessary Queries in Compact Sets

We use Q(s, e, f, x) to denote the collection of queries made during the run time
of OTM M̂e on (f, x) up to s steps. Formally,

Definition 1. Let e be a ϕ̂-program. Define Q : (N × N × T × N) → F by:
Q(s, e, f, x) = τ , where τ ∈ F with τ ⊂ f and dom(τ) is the collection of queries
made during the course of the computation of OTM M̂e on (f, x) in s steps. ¥

Clearly, Q(s, e, f, x) is monotone in s, i.e., s ∈ N, Q(s, e, f, x) ⊆ Q(s+1, e, f, x).

Definition 2. Let e, x ∈ N and f ∈ T . We say that Q(·, e, f, x) is defined in
the limit if and only if there exist s ∈ N and τ ∈ F such that, for every s′ ≥ s,

Q(s, e, f, x) = Q(s′, e, f, x) = τ.

In the case above, we write lim
s→∞

Q(s, e, f, x) ↓ = τ. ¥

We wish to treat the set of queries an OTM made as a dynamic complexity
measure, but it fails to satisfy Blum’s two axioms for complexity measure. That
is, lim

s→∞
Q(s, e, f, x) ↓ does not mean that ϕ̂e(f, x) ↓, and hence Blum’s first

axiom fails. Moreover, for some σ ∈ F with σ ⊂ f , lim
s→∞

Q(s, e, f, x) = σ is not
necessarily decidable, and hence Blum’s second axiom fails too.

Let F : T ×N → N be computable. Since we mean to characterize some ϕ̂-
programs e1, e2, . . . , en that compute the same functional F in terms of queries,
the topology T(· · · ) defined in [7–10] cannot serve as the relative topology in
which we need a workable notion of compactness. This is because ϕ̂e1 = ϕ̂e2 =
· · · ϕ̂en = F and thus T(ϕ̂e1 , ϕ̂e2 , . . . , ϕ̂en) = T(F ), and hence the complexity
of unnecessary queries cannot be described by the compact sets in T(F ). The
product topology, T × N (Baire and the Discrete topologies), is fine enough to
describe the needed compact sets but it suffers the same problem as discussed
in [7–10]. We thus introduce another family of topologies as follows.

Definition 3. Given e1, e2, . . . , en ∈ N, let B(e1, e2, . . . , en) ⊆ T ×N be defined
as follows: (σ, a) ∈ B(e1, e2, . . . , en) if and only if there exists some f ∈ T such
that, for each i ∈ {1, . . . , n}, we have

lim
s→∞

Q(s, ei, f, a) ↓ = σi,

and σ =
⋂

i∈{1...n}
σi. Let Q(e1, . . . , en) be the topology on T ×N defined by the

basic open sets in B, where

B =
{
((σ, x))

∣∣ (σ, x) ∈ B
}

.

¥
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Since a ϕ̂-program e may make unnecessary queries outside the domains of its
minimal locking fragments, it follows that the topology Q(e) may be finer than
the topology T(ϕ̂e) which is defined by the minimal locking fragments of ϕ̂e.
That is, T(ϕ̂e) ⊆ Q(e). In other words, if e is a ϕ̂-program for F : T ×N → N,
then T(F ) ⊆ Q(e). On the other hand, if Q(e) ⊂ T(F ), then we can conclude
that e cannot be a ϕ̂-program for F . In general, we have

T(ϕ̂i, ϕ̂j) ⊆ Q(i, j).

For convenience, we define the following notations. Let card(S) be the cardinality
of set S. Suppose i and j are two ϕ̂-programs that compute the same functional,
i.e., ϕ̂i = ϕ̂j . Define

Q[i<j] =
{

(f, x)
∣∣ card( lim

s→∞
Q(s, i, f, x)) < card( lim

s→∞
Q(s, j, f, x))

}
,

Q[i=j] =
{

(f, x)
∣∣ card( lim

s→∞
Q(s, i, f, x)) = card( lim

s→∞
Q(s, j, f, x))

}
,

Q[i>j] =
{

(f, x)
∣∣ card( lim

s→∞
Q(s, i, f, x)) > card( lim

s→∞
Q(s, j, f, x))

}
.

The following definition makes use of the compactness in the topology we
just mentioned to define the meaning of “better” ϕ̂-programs in terms of query-
complexity.

Definition 4 (Query Speed-up). Let ϕ̂i = ϕ̂j.

1. We say that j is a weakly query sped-up version of i if and only if

Q[i<j] is compact and Q[i>j] is noncompact in Q(i, j).

If j is a weakly query sped-up version of i, we write ϕ̂i ≺∗Q ϕ̂j.
2. We say that j is a strongly query sped-up version of i if and only if

Q[i<j] ∪Q[i=j] is compact in Q(i, j).

If j is a strongly query sped-up version of i, we write ϕ̂i ≺≺∗Q ϕ̂j. ¥
Suppose that we are to write a new ϕ̂-program j for ϕ̂i. Intuitively, if the new

ϕ̂-program j can improve the query-complexity on a “large” (noncompact) set
of inputs and leaves a “small” (compact) set of inputs on which j queries more
than i does, we say that j is a weakly query sped-up version of i. Note that, we do
not care how many inputs on which the query-complexity remains unchanged.
Since T(ϕ̂j) ⊆ Q(i, j), it follows that, if Q[i<j] is compact in Q(i, j), so is it in
T(ϕ̂j), and hence we can patch ϕ̂-program j on Q[i<j] so that the patched ϕ̂-
program will never query more than i does. Whereas, if ϕ̂-program j is a strongly
query sped-up version of i, then the set on which j does not improve its query-
complexity must be “small” (compact). Note that, if Q[i<j] ∪Q[i=j] is compact
in Q(i, j), then Q[i>j] must be noncompact in Q(i, j). Clearly, for ϕ̂i = ϕ̂j , we
have the following implication:

ϕ̂i ≺≺∗Q ϕ̂j =⇒ ϕ̂i ≺∗Q ϕ̂j .

5



Definition 5 (Query-optimal ϕ̂-programs). Let F : T ×N → N be a com-
putable functional. Let e be a ϕ̂-program for F .

1. We say that e is an absolute query-optimal ϕ̂-program for F if and only if,
on every (f, x) ∈ T ×N, the OTM M̂e does not make unnecessary queries
during the course of computing ϕ̂e(f, x).

2. We say that e is a strong query-optimal ϕ̂-program for F if and only if
there is no ϕ̂-program i for F such that, ϕ̂e ≺∗Q ϕ̂i.

3. We say that e is a weak query-optimal ϕ̂-program for F if and only if there
is no ϕ̂-program i for F such that, ϕ̂e ≺≺∗Q ϕ̂i. ¥

Definition 5 gives us three versions of query-optimal ϕ̂-programs, where ver-
sion 1 is the strongest notion and version 3 is the weakest one. Suppose that e is
a ϕ̂-program for F : T ×N → N. The following implications are straightforward:

1. If e is an absolute query-optimal ϕ̂-program for F , then it is also a strong
query-optimal ϕ̂-program for F .

2. If e is an strong query-optimal ϕ̂-program for F , then it is also a weak
query-optimal ϕ̂-program for F .

Moreover, if T(ϕ̂e) = Q(e), then e is an absolute query-optimal ϕ̂-program for
ϕ̂e. We shall argue that the stronger the notion of query-optimum, the easier
we can obtain a speed-up theorem. In other words, it is more difficult to obtain
a query-optimal OTM when the notion of query-optimum becomes stronger.
However, we do not know if the speed-up phenomenon still exists under our
weakest notion of query-optimum; neither do we know how far can one weaken
the notion of query-optimal programs to do away the speed-up phenomenon
while keeping the notion nontrivial. We give partial results in the next section.

4 Query-optimal Programs

With a fixed complexity measure that satisfies Blum’s axioms, the original speed-
up theorem states that there is a total computable function without optimal
program for it. Although query-complexity does not satisfy the Blum’s axioms,
each of the three versions of query-optimal programs gives rise to the following
questions:

1. Does every computable functional F : T × N → N always have a query-
optimal ϕ̂-program for it?

2. If the answer to the first question is negative, then can we construct the
query-speed-able functional?

3. If a given F : T × N → N does have a query-optimal ϕ̂-programs for it,
then can we uniformly construct a query-optimal program for F from an
arbitrary ϕ̂-program for F?

4. Suppose there is no query-optimal ϕ̂-program for ϕ̂e0 : T ×N → N. Can
we effectively construct an infinite sequence of query-sped-up version of ϕ̂-
programs from e0? That is, can we have e0, e1, e2, . . . such that, for each
i ∈ N, ei+1 is a query-sped-up version of ei?
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We have a positive answer to the second question with respect to the abso-
lute and strong versions of query-optimal programs. Thus, a negative answer to
the first question follows immediately. Compared to the original nonconstruc-
tive speed-up theorem, the speedable functional for the second question is very
simple. However, we do not know if there is a computable F : T × N → N
that can forever strongly speed-up, i.e., we do not know if there is a computable
F : T ×N → N without a weak query-optimal ϕ̂-program. The answer to the
third question is negative given by Theorem 4. The fourth question is still open.
That is, given ϕ̂e0 : T ×N → N that is known to be speedable, we do not know
if there is an effective way to construct a sequence of ϕ̂-programs such that,

ϕ̂e0 ≺∗Q ϕ̂e1 ≺∗Q ϕ̂e2 ≺∗Q · · · · · ·

or similarly,
ϕ̂e0 ≺≺∗Q ϕ̂e1 ≺≺∗Q ϕ̂e2 ≺≺∗Q · · · · · · .

Let ϕe(x) ↓s denote the case that the Turing Machine Me, on x, halts in s
steps. We now define a useful functional K : T ×N → N in the following.

Definition 6. Define K : T ×N → N by

K(f, x) =
{

ϕx(x) + 1 if ϕx(x) ↓s, where s =
∑f(0)

i=0 f(i);
0 otherwise.

¥

Let H denote the set {x|ϕx(x) ↓}. For any (f, x) ∈ T ×N, if x 6∈ H, then
any ϕ̂-program that computes K, on input (f, x), may ask arbitrarily many
unnecessary queries, where the number of queries depends on the value of f(0).
It is easy to prove that there is no ϕ̂-program for K with all unnecessary queries
removed (Theorem 1). Even if we lower the standard to strong query-optimal
programs, we still cannot have a query-optimal ϕ̂-program for K (Theorem 2).
Theorem 3 states that K does have a weak query-optimal program for it.

Theorem 1. K has no absolute query-optimal ϕ̂-program.

Proof: We show that from an absolute query-optimal ϕ̂-program for K, if any,
one can construct a solution to the halting problem.

Suppose, by contradiction, ϕ̂e is an absolute query-optimal ϕ̂-program for
K. Clearly, if x 6∈ H, then for any f ∈ T , K(f, x) = 0. On the other hand, if
x ∈ H, there must be two distinct f, g ∈ T such that ϕ̂e(f, x) 6= ϕ̂e(g, x). Thus,
some queries to the oracles f and g must be made. Therefore, given any x ∈ N,
we can run ϕ̂e(∅∼0, x) first, where ∅∼0 is the zero everywhere function. Then, if
no queries were made during the course of computation, we know that x 6∈ H.
Hence, N−H is recursively enumerable, a contradiction. ¤

Theorem 2. K has no strong query-optimal ϕ̂-program.

7



Proof: Suppose, by contradiction, ϕ̂e is a strong query-optimal ϕ̂-program for
K. Let i 6∈ H such that, for any f ∈ T , the OTM, M̂e, on (f, i), will make
oracle queries at points 0, 1, 2, . . . , f(0). Such i must exist, otherwise the halting
problem can be solved by a similar argument given for the proof of Theorem 1.
We construct a weakly sped-up version of e as shown in Figure 1.

Program

input f : T , x : N;

if x = i and f(0) is even

then output 0;

else output bϕe(f, x); /* by running bϕ-program e on (f, x) */

End program

Fig. 1. A Weakly Sped-up Version of bϕe

Let the index of the ϕ̂-program in Figure 1 be p. Clearly, if x 6= i or if f(0)
is odd, then the two ϕ̂-programs, e and p, will perform the same computation,
and hence the two make the same oracle queries. The two computations differ
on the following set: {

(f, i)
∣∣ f(0) is even

}
. (3)

Clearly, the set above is noncompact in Q(e, p). According to the program p and
the assumption on i, the following set is the same as (3),

{
(f, i)

∣∣ card( lim
s→∞

Q(s, e, f, i)) > card( lim
s→∞

Q(s, p, f, i))
}

.

Thus, Q[e>p] is noncompact in Q(e, p). Moreover, Q[e<p] = ∅, and hence Q[e<p]

is compact in Q(e, p). It follows that p is a weakly sped-up version of e, i.e.,
ϕ̂e ≺∗Q ϕ̂p. Therefore, e cannot be a strong query-optimal ϕ̂-program for K. ¤

Theorem 3. There is a weak query-optimal ϕ̂-program for K.

Sketch of Proof: It is impossible to strongly speed-up any ϕ̂ forever. Otherwise,
we can reach two ϕ̂ programs e and p such that, ϕ̂e = ϕ̂p = K and ϕ̂e ≺≺∗Q ϕ̂p.
Then, we can compare the queries made during the course of the computations
between ϕ̂e and ϕ̂p to solve the halting problem. Therefore, a weak query-optimal
ϕ̂-program for K must exist. We skip details of the proof. ¤

However, we do not know if there is a computable type-2 functional such
that, there is no weak query-optimal ϕ̂-program for it. In other words, we do
not if there is a speed-up phenomenon associated with the notion of weak query-
optimum.

Suppose we know that a query-optimal program for ϕ̂e does exist. In general,
there is no effective way to construct a query-optimal version of e in any strength,
i.e., absolute, strong, and weak query-optimum. We state this in the following
theorem, which is the strongest version in the sense that the weakest version of
query-optimal programs is considered.
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Theorem 4. There is no recursive r : N → N such that, for every ϕ̂-program
e, if ϕ̂e is total and there is a weak query-optimal program for it, r(e) is a weak
query-optimal ϕ̂-program for ϕ̂e.

Proof: By contradiction, suppose such recursive r : N → N exists. Consider the
following program shown in Figure 2. Suppose that, by the recursion theorem,
the index of the ϕ̂-program is e.

Program e

input f : T , x : N;

Q ←− Q(f(0), r(e), f, x);

if bϕr(e)(f, x) converges in f(0) steps

then output f(max(dom(Q)) + 1);

else output f(1);

End program e

Fig. 2. A bϕ-program with index e for Theorem 4

According to the construction, it is clear that e is a total ϕ̂-program. By
assumption, r(e) is a weak query-optimal version of e. On any (f, x) ∈ T ×N,
the OTM M̂r(e) will never halt in f(0) steps, otherwise the OTM M̂r(e) does
not compute ϕ̂e. This is because if the OTM M̂r(e) on (f, x) halts in f(0) steps,
Q must contain the complete collection of queries made by the OTM M̂r(e) on
(f, x). But ϕ̂e(f, x) is the value of f at a point not in Q.

Thus, we conclude that for every (f, x) ∈ T ×N, ϕ̂e(f, x) = f(1). But if that
is the case, f(0) will not be queried by the OTM M̂r(e), namely, the value of f(0)
does not affect the computation of M̂r(e) at all. Thus, if f(0) is sufficiently large,
ϕ̂r(e)(f, x) will converge in f(0) steps, and hence ϕ̂e(f, x) = f(max(dom(Q))+1).
Thus, the OTM M̂r(e) does not compute ϕ̂e.

Therefore, r(e) cannot be a weak query-optimal version of ϕ̂-program e. ¤

5 Conclusion

The oracle query is a unique dynamic complexity measure in type-2 computa-
tion. Although Blum’s complexity measure has created a rich chapter in ma-
chine independent complexity theory, it is not appropriate to impose the same
requirement to query complexity. We therefore provide new notions in order to
describe the concept of query-optimal programs in type-2 computation. We ob-
tain a speed-up theorem under a reasonable notion of query-optimal programs,
which means that there exists a computable type-2 functional that does not have
a query optimal OTM for it. Our version of speed-up theorem is stronger than
the classical one in a sense that the speedable functional, K, does not depend
on the speedup factor, i.e., the computable function r in equation (1).
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Clearly, there are many open questions that deserve further invitation. For
example, can we uniformly construct a query-sped-up program for our functional
K? Do we have a speed-up theorem under our weaker notions of query-optimal
programs? Some classical questions can also be asked. For examples, do we have
a union theorem? gap theorem? compression theorem? Or do we have a complex-
ity hierarchy characterized by the query-complexity? Since Blum’s two axioms
cannot be applied to the query-complexity, the approach and results must be
very different from the classical ones. It seems to us that the framework proposed
in this paper may be a feasible direction for computer science theorists to study
the query complexity closely.
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