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ABSTRACT 

 

  Theoretically, using any Linear Congruence Generator (LCG) to generate pseudo- 

random numbers for cryptographic purposes is problematic because of its predictableness. On the 

other hand, due to its simplicity and efficiency, we think that the LCG should not be completely 

ignored. Since the random numbers generated by the LCG are predictable, it is clear that we 

cannot use them directly. However, we shall not introduce too much complication in the 

implementation which will compromise the reasons, simplicity and efficiency, of choosing the 

LCG. Thus, we propose an easy encryption method using an LCG for email encryption. To see 

how practical in predicting random numbers produced by an LCG, we implement Plumstead’s 

inference algorithm [2] and run it on some numbers generated by the easiest congruence: Xn+1 = 

aXn+ b mod m. Based on the result, we confirm the theoretical fault of the LCG, that is, simply 

increasing the size of the modulus does not significantly increase the difficulty of breaking the 

sequence. Our remedy is to break a whole random number into pieces and use them separately 

(with interference from another source, in our case, English text). We use 16-bytes random 

numbers and embed each byte of the random number as noise in one text character. In such a 

way, we can avoid revealing enough numbers for the attacker to predict.  
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1.  INTRODUCTION 

 

The Linear Congruence Generator (LCG) has been used in generating pseudo-random 

numbers for a large variety of applications [11]. Although the pseudo-random numbers produced 

by an LCG bear many favorable properties to many (if not all) applications [6], they are 

theoretically not suggested for cryptographic purposes because they are predictable (even if the 

parameters of the linear congruential equations are unknown) [8]. This weakness however is not 

formidable in some practical applications when a lightweight encryption will suffice but 

efficiency is a major concern. Ordinary email exchange seems to be such an example where some 

lightweight encryption may be enough to provide basic protection as the envelope to regular 

postal mails. We therefore propose an easy method for email encryption with an LCG involved.  

  To assess the security strength of using the LCG, we implement Plumstead’s (Boyar’s) 

powerful inference algorithm against congruential equations in its easiest form. Our experimental 

results show that the algorithm can correctly predict the entire sequence with a few known 

numbers in the sequence. Thus, if we directly embed the numbers in our email text, some 

straightforward classical cryptanalysis can recover enough numbers for inference. To avoid this 

problem without further complicating our congruential equation, we choose big moduli (16 bytes 

or bigger) to produce big pseudo-random numbers and embed a number in 16 characters of the 

text. Since a correct guess on a string of 16 characters reveals just one number in the sequence, no 

prediction can be possibly made.  



 

 

2. LINEAR CONGRUENTIAL GENERATORS  

 

The Linear Congruential Generator (LCG) generates a sequence of pseudo-random 

numbers according to some recurrence congruence. The easiest LCG uses the following equation:  

 

Xn+1 = aXn + b mod m.                                                   (1) 

 

In (1), a is called the multiplier, b the increment, and m the modulus. The numbers will be 

generated in order as a sequence: X0, X1, X2, etc. In the sequence, X0 is given, which is called 

seed. We say that a, b, m, and X0 are the parameters of an LCG. The quality of an LCG depends 

on the selection of its parameters, which has been widely discussed for practical reasons. For 

example, the condition of obtaining the maximum cycle (m-1) of un-repeated numbers was given 

by M. Greenberger in 1961 for the special case, m = 2
n
. In 1962, Hull and Dobell gave the 

general condition (detailed discussion and proofs can be found in [7]). Park and Miller [10] 

suggested a “minimal standard” for implementation, which is not as easy as it may seem. A more 

recent and complete survey was done by Entacher [3]. However, these researchers emphasized on 

engineering applications, mostly for simulations, and put aside the issue on predictableness. In 

fact, most commercial LCGs disclose their implementations with fixed parameters because 

secrecy is not an issue for statistical use [12]. In other words, their designs are not meant for 

cryptographic applications.  

 

3. EMAIL ENCRYPTION WITH LCG  

 

Although the market for email encryption has always been promising ever since the 

Internet came to its age, its research and products are unreasonably few. In part this was because 

software companies and individuals had been discouraged to develop an email software with 

encryption ability due to the export control laws of the United States. Also, most public key 

ciphers were patented. For example, PGP and its creator, Phil Zimmermann, had experienced all 

these non-technique troubles [4]. Until recently, the export controls are relaxed and patents of 

many public-key ciphers have gradually expired. A new wave of developing fast, secure, 

inexpensive, and legal email encryption software is certainly expected.  

 

3.1. Encryption Method 

 

In this section we introduce our email encryption method. 

 

Hybrid Cipher: We follow the structure of a hybrid cipher used in PGP. In PGP, there is 

an Advanced Encryption Standard (AES) cipher for actually encrypting the email text. Also, there 

is an RSA cipher for encrypting the symmetric keys of the AES.  In our cipher, we keep the 

standard RSA for the symmetric key exchange and use our LCG noise cipher for encrypting the 

email message.  

The two parties, the sender and the receiver, shall establish keys for the RSA cipher upon 

their first communication. We omit the detailed descriptions about how a hybrid cipher and RSA 

work, which are rather standard (see [4, 13] for details). We use 512 bits (64 bytes) for the RSA 

public keys in our cipher, which is big enough for us to encrypt the 4 parameters of our LCG (16 

bytes for each). In real implementation, we suggest using at least 2048 bits for the RSA public 

keys to guarantee security under today’s computer power. 

  

  Key Scheduling: Since our cipher does not resist plain-text attack, the sender has to 



randomly select new LCG parameters for each email to send off. Repeatedly using the same LCG 

parameters will significantly undermine the security of our system. A fully isolated random 

number generator should be used for the selection of the parameters. For example, the interval of 

mouse clicks is considered as a good source for seeding a generator, namely selecting values for 

a, b, m, and X0.  

The moduli are required to be a 16-byte prime. We use the Miller-Rabin test to select 

prime numbers with error rate less than 1/2
|m|
, where |m| is the length of m (see [13], page 179). 

According to the Prime Number Theorem, the density of primes in 16-byte integers is about 

1/(ln2
128
) = 0.0127. Thus, we can successfully pick up a prime within about 100 random tests, 

which is affordable. After m has been decided, we randomly assign numbers less than m to a, b, 

and X0 without other restrictions except for removing some trivial values such as 0 or 2
k
. There is 

no concern about the length of the cycle in the sequence generated, since a 128-bit prime as the 

modulus is very likely to generate unrepeated numbers within the length of a regular email, 

especially we will use one random number for every 16 characters of the email.  

 

  Encrypting Text: We assume the plaintext to be encrypted is prepared in extended 

ASCII code (8-bits) without compression. Compression can increase the difficulty of 

cryptanalysis (this is what PGP does) but we do not consider this in our test cipher. Once the 

parameters of our LCG are decided, we generate X1, X2, X3, ... one by one, until all characters in 

the message have been encrypted. Starting from X1, we embed each byte of the random number 

in a character of the email message. For example, let (2) shown in the following be the message 

to be encrypted: 

 

         Telecommunication in the state of the art              (2) 

 

The values of the first three characters are T = 84, e =101, l = 108. Since there are 41 characters, 

we need three 16-byte random numbers. The embedding operation is simply the addition modulo 

256. A more complicate operation doesn’t seem necessary. For example, let 

 

X1 = 1O5AFB11FCBBOO112233445566778899h 

 

The first three bytes are 10h = 16, 5Ah = 90, and FBh = 251.  The values of the first three cipher-

text characters of (2) are: 

 

    84 + 16     mod   256 = 100 

    101 + 90   mod   256 = 191 

    108 + 251 mod   256 = 103 

 

Moreover, a message will be padded by space to make the length a multiple of 16. 

For decryption, the receiver used the RSA to decrypt the parameters of the LCG. Then, 

run the LCG to reproduce the same sequence of the random numbers used by the sender. The 

decryption method is the reverses operation of addition modulo 256, which is straightforward. 

 

 4. CRYPTANALYSIS 

  

It is well known that the LCG is predictable. This was first argued by Knuth in [8], then 

by Boyar [2, 1]. Until Krawczyk [9] who gave an inference algorithm for predicting any LCG in 

the most general form, the problem was theoretically settled. Moreover, in his survey paper [12], 

Ritter’s again warns any attempt to use the LCG for cryptographic purposes unless the sequence 

can be isolated from another generator. In our cipher, we will use plain-text to serve as such a 

generator for isolation. Although English certainly can’t be seen as a source of random numbers, 



we think the entropy of English has been good enough for the purpose. More precisely, the 

strength of our encryption method depends on the answers to the following two questions: 

  

(1) How many random numbers in the sequence need to be known for extrapolating the 

entire sequence?  

 

(2) How many random numbers used for encryption can be retrieved from the cipher-text 

by cryptanalysis? 

 

 First, we need experimental results for question (1) so we can propose an appropriate 

remedy for this theoretical weakness. For (2), we shall answer the question in Section 4.2. 

 

4.1 Predicting the Sequence of an LCG  

 

In this section, we briefly describe and analyze Plumstead’s (Boyar’s) algorithm for 

inferring an unknown LCG and discussion our experimental results. 

  

  Plumstead’s Algorithm [2]: The algorithm assumes that the LCG is fixed to (1) with a, 

b, m, and X0 unknown and no specific properties of them are further assumed. The algorithm will 

find a congruence, Xn+1 = a'Xn + b' mod m, possibly with different multiplier and increment but 

generating the same sequence as with the unknown a, b, m, and X0. The inference consists of two 

stages: (I.) Finding a' and b'; (II.) Predicting Xi+1 and modifying the modulus m, if necessary. Let 

‹Xi› denote sequence X0, X1, X2,……, and ‹Yi› denote the sequence (X1-X0), (X2-X1), (X3-X2), 

….., i.e. Yi=(Xi+1-Xi). 

 

Stage I:  
1. Find the least t such that d|Yt+1, where d = gcd (Y0, Y1,….,Yt);  

2. For each i with 0 ≤ i ≤ t, find ui such that (∑
t
i=0  uiYi )= d; 

3. Set a' = (∑
t
i=0 uiYi+1)/d, and b' = (X1-a'X0). 

 

 This stage will give Xi+1 = a'Xi + b' mod m for all i ≥ 0. 

 

Stage II:  We use Gold’s learning paradigm [5], i.e., when a prediction Xi is made, the actual 

value will be available to the inference algorithm. Initially, set i = 0 and m = ∞ and assume X0 

and Xi are available (we can reuse the numbers used in the previous stage). Repeat the following 

steps forever: 

  

1. Set i = i+1 and predict Xi+1 = a'Xi + b' mod m. 

2. If Xi+1 is incorrect, set m = gcd (m, a'Yi-1-Yi). 

 

It is easy to prove that ‹Xi› indeed can be inferred in the limit, but the argument for an 

upper bound of the number of incorrect predictions is highly nontrivial (see [2] for details).  

 

 Analytic and Empirical Results of Plumstead’s Algorithm: It is clear that every step 

in both stages is polynomial-time computable in terms of the size of m. In [2], Plumstead proves 

that t in Stage I is bound by the length of m. Thus, the algorithm is optimal with sample 

complexity O(log2m) in the worst case.  

  In practice, we found that the number of samples needed in average is far fewer than in 

the worst case. We test moduli m, from 1 byte in size and double the size up to 32 bytes. The 

parameters are selected according to the guideline of our symmetric key scheduling. For moduli 



m bigger that two bytes, we use the Miller-Rabin test to select prime numbers with error rate less 

than 1/2
|m|
. For each size of m, we test 1000 different sets of parameters.  

 

m (bytes) µ δ Min Max 

1 5.29541 1.06442 4 13 

2 5.52248 1.04243 4 13 

4 5.60579 1.15785 4 17 

8 5.58585 1.11389 4 16 

16 5.80249 1.76449 5 31 

32 6.1059 3.14907 5 57 

Table 1: The Results of Plumstead's Algorithm 

 
Table 1 shows the results of our experiments, where µ is the average of the numbers 

needed to infer the sequence and δ is the standard deviation. Also, the table shows the best (min) 

and worst (max) cases. In our experiments we take the liberty to notify our inference program to 

stop when it reaches the correct point. Note that, we do not overpower our program with this 

ability because, in our email encryption case, this can be done by checking, for example, the 

index of coincidence of the decrypted cipher to decide if the random sequence is correctly 

inferred.  

 

4.2. Retrieving Random Numbers from Cipher-Text  

 

Based on the results above, it is clear that the size of m does not significantly prolong the 

inference process. Intuitively, this is because the size of m does not affect the number of the 

internal states of the LCG, which is very small [6]. Thus, if we simply add a whole random 

number into a plain-text character, a classical cryptanalysis can easily retrieve 5 to 6 numbers 

from the cipher-text, which are enough to infer the entire sequence via Plumstead’s algorithm in 

most cases (even the modulus is as big as 32 bytes). A common attack is to search common 

words in typical English and simply try every position of the cipher-text to see if we can recover a 

meaningful message. For example, “the” can be expected in almost every English email. 

Moreover, since we keep all delimiters of the plain-text, a 3-letter word actually contributes 5 

characters. Consider the following diagram where the segment C1C2C3C4C5 in the cipher-text is 

obtained from “ the “ (note the two space before and after the word). 

 

.................................. C1 C2 C3 C4 C5 .................................. 

 t h e   

X1 X2 X3 X4 X5 

 

 

After a few trials, we will land “ the “ at a right position. Then, each Xi can be obtained by 

removing corresponding characters in “ the “ from the cipher character, Ci’s. Note that the plain-

text in (2) has two positions for “ the “. In general, if we can guess a word of n letters in the 

message and land it at the right position, we can obtain n+2 pseudo-random numbers. 

  As the results shown in Table 1, it is very likely that five numbers are enough for 

inferring the sequence. Even if in some cases the random sequence cannot be broken with five 

known numbers, a serious attacker may search a dictionary for a longer word and try to find a 

match in the email message. For example, the word “Telecommunication” in (2) will reveal a 

sequence of 19 random numbers (include the ending space). As we mentioned earlier, the 

checking can be done automatically by examining the index of coincidence of the decrypted text 



obtained by removing random numbers generated by a hypothetical LCG. If the LCG is not the 

correct one, the index of coincidence will indicate that the decrypted text is close to a random text 

and the LCG should be rejected. With today’s computer power, the attacker can search an entire 

dictionary and do the necessary computation within a few hours. 

On the other hand; our remedy to this problem is to distribute a 16-byte random number 

into 16 text characters as shown in Section 3.1. In such a way, even if the attacker successfully 

guesses 48 characters, (this is very unlikely, since this requires two consecutive long words to be 

located in the cipher-text), giving away three pseudo-random numbers generated by an LCG can’t 

hurt the secrecy of the LCG. 

  

5. CONCLUSION 

  

Since LCG is such an efficient and widely known pseudo-random numbers generator, we 

don’t want to completely remove it from our cryptographic design just because of its theoretical 

weakness, especially when we can find an easy way to patch this fault. In general, this fault can 

be patched by blocking away the numbers from directly exposing to the attacker. In particular, 

email encryption is a good example to achieve this. That is, the pseudo-random numbers and the 

text itself can hide each other. 

To conclude this investigation, we recommend that: if simplicity and efficiency are our 

major concerns and light-weight encryptions can meet our security requirement, LCG’s should be 

considered, provided we should find an efficient way to hide the pseudo-random numbers 

generated by LCG’s. 
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