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Abstract

Recent advances in wireless networks and embedded systems have created a new class of perva-
sive systems such as Wireless Sensor Networks (WSNs) and Radio Frequency IDentification (RFID)
systems. WSNs and RFID systems have provided promising solutions for a wide variety of applica-
tions. However, security and privacy concerns have raised serious challenges on these systems. These
concerns have become more apparent when WSNs and RFID systems co-exist. In this article, we first
briefly introduce WSNs and RFID systems. We then present their security concerns and related solu-
tions. Finally, we propose a Linear Congruential Generator (LCG) based lightweight block cipher that
can meet security co-existence requirements of WSNs and RFID systems.

1 Introduction

Recent advances in wireless networks and embedded systems have created a new class of pervasive sys-

tems such as Wireless Sensor Networks (WSNs) and Radio Frequency IDentification (RFID) systems.

WSNs and RFID have made a variety of new and exciting applications viable. For example, WSNs have

been used in areas such as health monitoring, scientific data collection, environmental monitoring, and

military operations. RFID systems have become more and more popular to provide automatic identifica-

tion systems in areas such as supply chain management, payment systems, manufacturing, and inventory

control [1]. The integration of WSNs and RFID systems has also opened up new opportunities in areas

such as healthcare systems and wireless telemedicine.

1



WSNs usually comprise a large number of inexpensive, small, and battery-powered sensor nodes. One

representative sensor node is Berkeley-designed MICA2 Motes. Equipped with wireless communication

modules and microcontrollers, each sensor node can monitor physical or environmental conditions, such

as temperature, light, acoustic, etc., and collaborate to transmit data to a base station. WSNs are usually

resource-constrained on processing power, memory, bandwidth, and energy consumption. For example,

powered by AA batteries, MICA2 Motes consist of an 8 MHz 8-bit Atmel ATMEGA128L CPU with only

4KB RAM for data, 128KB program memory, 512KB flash memory, and 38.4kbps data rate ratio.

RFID systems usually consist of simple and low-cost RFID tags, more powerful RFID readers, and a

database which stores records associated with tag contents. Generally, a reader broadcasts an RF signal

within a certain wireless range to access digital data stored in tags. Powered by a signal from an RFID

reader or an internal battery, tags can respond to the reader by replying with information such as object

identification data. Because tags are usually manufactured on a massive scale and any additional circuitry

in tag design may incur extra cost, tags should be kept as lightweight as possible. For example, one tag in

the form of Electronic Product Codes (EPC) may only contain 128-512 bits of read-only storage, 32-128

bits of volatile read-write memory, and 1, 000-10, 000 gates [5].

Unfortunately, the wide deployment of these low-cost devices is often subject to various kinds of

attacks and thus raises serious security and privacy concerns. For example, WSNs are often deployed in

untrusted or hostile environment such as battlefield to perform mission-critical tasks, in which an adversary

can eavesdrop traffic, inject malicious messages, replay old messages, and so on. The pervasive deploy-

ment of tags makes RFID systems suffer from security threats such as tracking, hotlisting, and profiling

[3], which render tag data susceptible to an unauthorized reader and allow an adversary to gather private

information illegally. The extreme resource-constrained nature of tags also makes it possible for attackers

to insert a forgery or counterfeiting tag into an RFID system without being detected. All these vulnera-

bilities indicate that WSNs and RFID systems are not readily to be deployed for security-sensitive tasks

without first addressing their security problems. Moreover, with the emergence of exciting applications

such as wireless telemedicine, the co-existence of WSNs and RFID systems poses even more challenges

for suitable security mechanisms.

In this article, we first briefly introduce WSNs and RFID systems. We then present their related
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security and privacy issues, as well as related solutions. We demonstrate that existing security solutions do

not consider co-existence issues of WSNs and RFID systems. Finally, we propose a Linear Congruential

Generator (LCG) based lightweight block cipher that can meet security co-existence requirements. Note

that this article does not address integration issues (such as network architecture, networking protocols,

etc.) of WSN and RFID systems. Instead, we aim at providing co-existent security solutions for such

systems, i.e., we consider consistency and integration of security protocols.

2 Wireless Sensor Networks

One WSN may be composed of hundreds or thousands of miniature sensor nodes, or motes, which are

fitted with an on-board processor. The low-cost battery-powered sensor nodes have extremely limited

energy supply, stringent processing and communications capabilities, and scarce memory.

Sensor nodes are usually densely deployed in a sensor field in order to continuously monitor surround-

ing areas. In a sensor application, each sensor has the capability to collect data such as temperature,

humidity, light condition, and so on, depending on targeted applications. After sensor nodes collect data,

they can locally carry out some simple computations, and collaboratively route data to a base station for

analysis. A base station may be a fixed node or a mobile node capable of connecting WSNs to a commu-

nications infrastructure (for example, the Internet) where users can have access to reported data. In order

to reduce the amount of raw data transmitted to a base station and to save energy, sensor nodes often need

to perform aggregation operations so that only processed information, for instance, the mean, max, or min

of sensed raw data, is transmitted.

2.1 Security and Privacy Issues and Solutions for WSNs

The lack of physical security combined with unattended operations make sensor nodes prone to a high

risk of being captured and compromised. The wireless broadcast nature may result in privacy breaches

of sensitive information during data transmission. Therefore, security and privacy issues of WSNs have

attracted a lot of research efforts. In the following, we list a brief taxonomy of WSN attacks and their

representative solutions.
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2.1.1 Attacks

• Physical Attacks: Sensor nodes may be left unattended for a long time. Therefore, attackers may

have a high chance to compromise WSN nodes. From the hardware perspective, attackers can gain

complete access to microcontrollers in sensor nodes and thus obtain sensitive information stored

in node memory. From the software perspective, TinyOS, the most widely used Operating System

in WSNs, and various applications may also suffer from well-know exploitations such as buffer

overflow. All these enable attackers to extract relevant secrets, and insert malicious data to the

network very easily.

• Attacks at Physical Layer: Jamming is one of the most important attacks at physical layer. Aiming

at interfering with normal operations, an attacker may continuously transmit radio signals on a

wireless channel. Equipped with a powerful node, an attacker can send high-energy signals in order

to effectively block wireless medium and to prevent sensor nodes from communicating. This can

lead to Denial-of-Service (DoS) attacks at the physical layers.

• Attacks at Link Layer: The functionality of link layer protocols, such as those specified in 802.15.4/Zig-

Bee standards, is to coordinate neighboring nodes to access shared wireless channels and to provide

link abstraction to upper layers. Attackers can deliberately violate predefined protocol behaviors at

link layer. For example, attackers may induce collisions by disrupting a packet, cause exhaustion of

nodes’ battery by repeated retransmissions, or cause unfairness by abusing a cooperative MAC-layer

priority scheme [6]. All these can lead to DoS attacks at the link layers.

• Attacks at Network Layer: In WSNs, attacks at routing layer may take many forms. For example,

routing control packets exchanged among sensor nodes can be spoofed, replayed, or altered. In this

way, routing logic can be compromised. Data packets may also be selectively dropped, replayed,

or modified by compromised nodes. Besides these, WSNs also suffer from wormhole and sinkhole

attacks, in which messages may be lured or tunneled to a particular area through compromised

nodes. Attackers may also launch Sybil attack. Therefore, a single node may present multiple

identities to other nodes in a network.
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• Attacks targeting at WSN Services and Applications: In this respect, we use localization, aggrega-

tion, and time synchronization as examples.

Accurate locations play a critical role in many WSN applications. For example, location information

can be used in geographic routing protocols to facilitate sensor nodes to make routing decisions

based on their own and their neighbors’ locations. To enable location discovery protocols, WSNs

are equipped with beacon nodes, which often know their own locations and can transmit location

references to other sensor nodes that do not have location information. Location references contain

locations of beacon nodes. Based on received known locations and features of received signals,

other sensor nodes can then apply various algorithms to estimate their locations. Basically there are

two types of localization protocols: range-based and range-free. In range-based protocols, absolute

point-to-point distance or angle estimates can be applied to calculate location. Range-free protocols

have no such assumptions. Unfortunately, most of the proposed localization schemes become target

of attacks. For example, an adversary may compromise a beacon node to provide incorrect location

references, replay beacon packets previously intercepted at other locations, or manipulate beacon

signals to provide incorrect beacon signals. Therefore, sensor nodes may be misled to derive totally

wrong locations. This results in a significant negative impact on relevant applications.

Aggregation has been proven to be an important primitive to reduce communication overhead and

to save energy for WSNs. The aggregation node can collect raw data from a subset of sensor nodes

and aggregate (for example, average, sum, min, max) the received raw data and transmit them out

toward a base station. However, an adversary can easily compromise one or more aggregation nodes

and thus insert bogus readings or nonexistent events into the networks.

By synchronizing local clocks through message exchanges, time synchronization protocols are also

critical for WSNs to support many WSN applications such as tracking and localization. Unfor-

tunately, like many other services, time synchronization protocols also suffer from many kinds of

attacks [8]. These attacks try to violate time synchronization protocols from many different aspects.

For example, in masquerader attacks, an attacker A may pretend to be a different node B and ex-

change malicious information with node C, leading C to derive wrong information. In message

manipulation attacks, an adversary may drop, modify, or even forge exchanged timing messages.
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2.1.2 Defense Mechanism

We summarize representative countermeasures for above mentioned attacks. These countermeasures aim

at protecting the integrity, authenticity, and confidentiality of WSNs.

• Key Management and Trust Setup: One research problem is how to set up secret keys and bootstrap

secure communications among sensor nodes in WSNs. To do so, a wide variety of key management

schemes have been proposed. The first approach is based on trusted-server scheme, in which a

trusted server is responsible for key aggrement among nodes. However, because a trusted server is

not a suitable assumption for WSNs, this approach is not desirable. The second type of approaches

is public-key based schemes, in which asymmetric cryptography is used. However, because sensor

nodes are often resource-constrained, this type of approach is not suitable either. The third type of

approaches is based on key-predistribution schemes, where key information is distributed among all

nodes prior to deployment. Key-predistribution schemes seem most appropriate for WSNs. There-

fore, we list several representative approaches in the following.

Eschenauer et al. propose a random key-predistribution scheme, in which each sensor node receives

a random subset of keys (called key rings) from a key pool before deployment. Relying on proba-

bilistic key sharing, two sensor nodes can find one single common key within a key ring to act as a

shared key secret. Based on Eschenauer’s scheme, there are more research work with further security

enhancement and more security analysis. For example, Chan et al. propose a “q-composite” scheme,

in which q common keys are needed, instead of just one. Therefore, Chan’s scheme increases the re-

silience of WSNs against node capture. Chan’s scheme needs the same amount of key storage, while

requiring attackers to compromise many more nodes. With a little more computation overhead and

without using too much additional memory, Du et al. further propose to improve network resilience

based on Eschenauer’s scheme. Zhu et al. propose Localized Encryption and Authentication Pro-

tocol (LEAP), in which sensor nodes are preloaded with initial keys, from which further keys can

be established to set up different keys for future usage. Utilizing deployment knowledge which may

be available a priori, Du et al. also propose a random key-distribution scheme which can guarantee

that any two neighboring nodes can find a common secret key with a certain probability [9] [10].

With the recent progress of sensor platforms, there is an emerging trend to demonstrate that public
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key cryptography, such as RSA and Elliptic Curve Cryptography (ECC), may be feasible for WSN

related security applications. With optimized implementation of RSA and ECC, it now becomes

reasonable to run public key techniques on popular sensor nodes. This makes public key based key

management schemes a desirable candidate for WSNs.

• Secrecy and Authentication: Based on established keys, these are various kinds of authentication and

privacy mechanisms in WSNs. For example, TinySec [7], a software based lightweight encryption

mechanism, offers a feasible and efficient security solution for WSNs at the link layer. In this

option, using a block cipher based on Skipjack, each packet is encrypted and appended a Message

Authentication Code (MAC) to achieve message integrity and confidentiality.

In WSNs, an end-to-end encryption scheme is usually impractical. Instead, trust can be set up

between neighboring nodes and a hop-by-hop encryption can then be performed. For example,

with the help of symmetric cryptography techniques, an Interleaved Hop-by-Hop Authentication (I-

LHAP) [11] scheme is proposed to detect and to filter out injected false data in WSNs. In I-LHAP,

MACs are jointly generated by a group of nodes for a sensing target. A message is attached with

multiple MACs and each MAC is generated using one group key. Because a node usually only

knows one group key, it is very difficult for one node to modify a message without being detected.

Based on a Linear Congruential Generator (LCG), Sun et al. [2] propose a new block cipher that

is suitable for constructing a lightweight secure protocol for resource-constrained wireless sensor

networks.

• Secure Aggregation: Most existing secure aggregation schemes employ cryptographic techniques.

Przydatek et al. propose Secure Information Aggregation (SIA) to defend against stealthy attack,

whose purpose is to make a user accept false aggregation results. In SIA, aggregators need to prove

and commit in order to illustrate that answers provided by these aggregators are good approxima-

tions of true values. Chan et al. [12] further propose a secure hierarchical in-network aggregation

scheme, which can limit an adversary’s ability to manipulate aggregation results. In this way, an

adversary can gain no additional influence over final aggregation results through manipulation. The

scheme of Yang et al. [13] divides an aggregation tree into subtrees, each of which reports aggrega-

7



tion results to a base station. The base station then identifies suspicious reports and each suspected

group needs to prove the correctness of reported aggregates.

• Secure Localization: Different secure localization schemes have also been explored. Liu et al. [14]

propose two techniques to survive malicious attacks against location discovery. The first approach

is derived from the “consistency” among received beacon signals. Based on the observation that

malicious location references are usually inconsistent with benign ones, a Minimum Mean Square

Estimation (MMSE) based approach is applied to examine the inconsistency among received loca-

tion references and to filter out malicious location references. In the second approach, a deployment

field is divided into a grid of cells. Based on received location references, each node may “vote”

on the locations at which this node may reside. After processing all of the received location refer-

ences, the cell with the highest number of votes is the estimated location. In [15], Du et al. present

a scheme by letting sensor nodes verify whether derived locations are consistent with deployment

knowledge to identify location anomalies.

3 Radio Frequency Identification System

Envisioned as a replacement for barcodes, billions of RFID tags have been deployed on the market for var-

ious applications. For example, pharmaceutical companies have embedded RFID chips in drug containers

to track the theft of highly controlled drugs. Airline companies may use RFID tags to track and route pas-

senger bags. In all these applications, a tag is attached to a physical object and contains a digital number

associated with that object. RFID readers broadcast a radio signal which contains an identifier in order to

locate the object. Based on different operating frequencies (for example, 13.56 MHz or 915 MHz), RFID

systems may have different reading ranges (for example, 1m or 3m). Because many RFID tags may be

in the range of a reader at the same time, collisions may happen. Collision-avoidance protocols, such as

binary tree walking protocol [1], are thus proposed to resolve this collision.

The pervasive nature of RFID systems make stored data increasingly distributed among different par-

ties. This raises many new privacy and security for RFID systems. Because a reader is little more than a

radio transceiver, it is thus relatively easy for attackers to obtain illegitimate readers and to query RFID tags

for sensitive information. For example, consumer products labeled with insecure tags may reveal private
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information when queried by unauthorized readers. Many RFID protocols have no explicit authentication

procedures. This may result in serious privacy concerns.

3.1 Security and Privacy Concerns for RFID

Because identifiers of RFID tags may be static and never change, this facilitates tracking attacks - to enable

an attacker to track the movement of products. An adversary can also hotlist important objects, based on

which activities of targeted objects can be profiled [3]. RFID systems also suffer from tag spoofing and

cloning, in which an adversary can physically access tags or use an unauthorized reader to read tags in

order for spoofing. This allows an adversary to clone targeted tags.

3.2 Security and Privacy Solutions for RFID

Tags lack necessary computational, communication, storage, and power resources to support strong cryp-

tographic authentication schemes. These limitations make securing RFID systems a very challenging task.

So far, efficient and low-cost authentication represents one of the most important security efforts for

RFID systems. Molnar et al. [3] suggest a scheme to achieve mutual authentication between a tag and a

reader. The scheme requires a shared secret s between a tag and a reader. The basic idea is to let both a

reader and a tag generate a random number r1 and r2, respectively. To begin with, the reader sends r1 to

the tag. The tag then sends (r2, σ = ID ⊕ fs(0, r1, r2)) to the reader, where fs is a keyed pseudo-random

function. This message enables the reader to authenticate the tag. In order for the tag to authenticate the

reader, the reader needs to send a message r = ID ⊕ fs(1, r1, r2) to the tag.

To enhance security, Dimitriou [4] uses a secure one-way hash function and random session identifiers.

In this way, tag responses may remain untraceable. After a reader sends a nounce NR to a tag, the tag sends

(h(IDi), NT , hIDi
(NT , NR)), where NT is the nounce generated at the tag. After using this message to

authenticate the tag, the reader can send hIDi+1
(NT , NR), based on which the tag can authenticate the

reader.

Observing that human beings and tags bear similarities such as limited computing resources shared by

both parties, Juels et al. [5] propose a new and efficient authentication protocol HB+, which is improved

based on human authentication protocol Hopper and Blum (HB). In HB+, a reader and a tag share two

random secret x and y. The tag also needs to generate a random factor b. Each time a reader sends a query
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to a tag, the reader sends a new challenge a ∈ {0, 1}k. Based on a, b, x, and y, the tag generates z and

sends z to the reader. The reader verifies z before accepting the tag as legitimate.

4 Linear Congruential Generator based Approach

Prevention-based approaches are still the most widely studied approaches to provide security mechanisms

for WSNs and RFID systems. Resource-constrained nature of small devices presses a need for lightweight

primitives to provide security solutions. In this section, based on a Linear Congruential Generator (LCG),

we propose a lightweight block cipher that can meet the security and performance requirement of WSNs

and RFID systems.

Based on the Plumstead’s inference algorithm [2], we are motivated to embed the generated pseudo-

random numbers with messages in order to provide security. Specifically, the security of our proposed

cipher is achieved by adding random noise and random permutations to original data messages.

4.1 LCG Basics

The simplest form of an LCG uses the following equation:

Xn+1 = aXn + b mod m, n = 0, 1, 2, . . . (1)

where a is the multiplier, b is the increment, and m is the modulus. Xn and Xn+1 are the nth and

(n + 1)st numbers, respectively, in the sequence generated by the LCG. X0 is called the seed of the LCG.

X0, a, b, and m are the parameters of the LCG. The statistical properties of the pseudo-random numbers

generated by an LCG depend on the selection of its parameter.

Starting with this simplest LCG and motivated by the idea that we can use the information itself to

protect the random sequences, we pick up the Linear Congruential Generator (LCG) in its simplest form

to produce pseudo-random numbers. In addition to Plumstead’s theoretical analysis, we implement the

Plumstead’s algorithm to observe how many pseudo-random numbers are actually needed to successfully

recover the parameters of an unknown LCG, so we can adequately adjust our cipher to meet security

requirements.

We carry out experiments to measure the impact of m on the security performance of the LCG. We test
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the module, m, from 1 byte and double its size up to 32 bytes. For m ≥ 2 bytes, we used the Miller-Rabin

Test, a very efficient randomized algorithm for primality tests, to select and determine prime numbers with

an error rate less than (1
2
)�log2 m�. Given m, we select 1, 000 sets of different parameters (a, b, m, and X0).

For each set of parameters, we generate the sequence of pseudo-random numbers X1, X2, . . . , Xn. We run

the Plumstead’s algorithm to decide how many Xi are needed to recover the set of parameters (a, b, m,

and X0).

The results of our experiments are shown in Table 1, in which μ is the average number of samples

needed to successfully infer the pseudo-random number sequence while δ is the standard deviation. The

theoretical analysis of the Plumstead’s algorithm is based on the worst case. In reality, however, the worst

case rarely occurs. Experimental results show that the Plumstead’s algorithm is much more powerful than

what the theoretical analysis has suggested. We observe that the number of samples needed in average is

far fewer than that of the worst case. Also, Table 1 contains the best case (min) and the worst case (max)

for each size. The values of δ in Table 1 indicate that the worse case occurs rarely.

Table 1: Results of Plumstead’s Algorithm

|m| Bytes μ δ min max
1 5.438 0.939 5 12

2 5.617 1.221 5 17

4 5.554 1.082 5 15

8 5.586 1.114 5 16

16 5.802 1.764 5 31

32 6.105 3.149 5 57

Based on the results illustrated in Table 1, we can see that the size of m does not prolong the inference

process significantly. This is because, from the theoretical point of view, the size of m does not affect the

number of internal states. Therefore, for an LCG, instead of increasing the size of m, we need to hide

the numbers generated. Also, from the results illustrated in Table 1, we can see that if we can find a way

to prevent the adversary from retrieving five or more consecutive numbers from the sequence, our cipher

based on the LCG will be secure.
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Figure 1: LCG based Hop by Hop Security Protocol for WSNs.

4.2 LCG based Security Protocols in WSNs

In this section, we briefly introduce our LCG based security protocols for WSNs. Please refer to [2] for

more details.

Our proposed cipher to encrypt a 16 Byte packet is illustrated in Fig. 1(a). In Fig. 1(a), we first use

the LCG to generate a random number X1 (Step 1) and embed the pseudo-random number X1 into the

plaintext message (Step 2). We then apply the permutation function (Step 3). X1 will also serve as the

source of the permutation function. The final ciphertext is obtained after step 4.

Based on an LCG based block cipher, the overall hop-by-hop security scheme is illustrated in Fig. 1(b).

In Fig. 1(b), sensor nodes, such as nodes A, B, C, and D have monitored some events and transferred

the readings to their immediate aggregator, node H . Each sensor node appends a MAC to the plaintext

message P and uses their shared secret keys with H to encrypt the whole message. After H receives

the readings, H uses the corresponding secret to decrypt and to authenticate the received messages. This

time, node H appends a new MAC to the aggregated result and uses its shared secrets with its immediate

aggregator, node J , to encrypt the whole message. The process continues until the result reaches the base

station.
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4.3 LCG based Security Protocols for RFID

4.3.1 Keying Mechanisms

For the read-only tags, a, b, m, and X0 can be stored, and these numbers can be used to generate the

random number for current usage.

In the very basic scheme, a secret X1 is shared between the reader and the tag. Different approaches

can be used to do this. For example, in the deployment of rewritable tags, X1 can be a pseudo-random

number and do not need to go through the LCG process. Also, X1 can be stored in the database with the

ID of the tag. For example, in a store, when the item is checked out and no tag is needed, the secrets can

be erased from both the database and the tag. When a new item arrives in the store or an item is returned,

we can let the powerful machines to generate random numbers, and write it into tags.

4.3.2 Length Selection and Security Analysis

Based on this consideration, we tailor Fig. 1(a) to a more general and lightweight block cipher, as illus-

trated in Fig. 2. In Fig. 2, the length of the input message and X1 is 2L Bytes. The permutation function

π0π1 . . . π2L−1 is obtained based on X1, i.e., each πi is determined by the first �log2 L� + 1 bits of Bi and

π0, π1, . . . πi−1.

X1

p1 p2

L Byte

C1 C2 Permutation Function

plaintext

ciphertext

Step 2

Step 3

Step 4

B
0

B
1

B
2L-1

X1

Block Cipher
'
1C '

2C

(0 <= i < 2L)

Figure 2: LCG based Block Cipher for RFID.

Security Analysis The mapping from X1 to the permutation is many-to-one. Under the chosen-plaintext

attack, the adversary may successfully obtain the permutation function if he is allowed to choose and

encrypt 2L plaintexts. However, the same permutation function may be constructed based on 2562L

(2L)!
many

different pseudo-random numbers X1. When L = 4, for example, 2562L

(2L)!
≈ 249, which is not feasible
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to guess the correct X1. Using Stirling’s approximation for (2L)!, one can see that increasing L with

L < 128 will also increase 2562L

(2L)!
. Thus, a larger L within the reasonable range for applications will lead to

better security. Nevertheless, this will also increase computational overhead. L can be treated as a security

parameter to the system.

When L = 4, we use the first three bits (8 = 23) in Bi to construct the permutation function. The

probability that the values in Bi do not introduce collisions, according to Birthday attack, when n = 8

and k ≈
√

n ln 0.5−1 − 1 ≈ 2.62. The probability of Bk mod 2L ∈ {π0, π1, . . . , πk−1} (the probability

of collision) is at least 0.5. Therefore, starting from π2, the value of πi is not likely to be the value of Bi

mod 2L. As i becomes larger, the chance of collisions becomes larger and the chance that the attacker

obtains the right value for Bi becomes smaller.

Discussion Our cipher is designed based on the following belief: While the pseudo-random numbers

are generated to protect the message, the entropy of the message itself can in turn protect the pseudo-

random numbers. Thus, if the message sent out from the tags is almost flat, i.e., with very low entropy,

our encryption in Step 2 alone is insecure since too many random bits can be recovered and, consequently,

the size of the possible key space will be largely reduced. For this reason, we introduce the permutation

in our cipher in Steps 3 and 4 to guarantee that even if our cipher is applied to a low entropy environment,

the security of our cipher will not be significantly compromised.

Moreover, the encryption in Step 2 alone cannot resist known-plaintext attack in case the message in a

sequence of transmitted packets is known to the adversary. To fix this problem, the permutation function

takes on in Step 3, in which the random numbers generated by the LCG play an extra role in altering the

original order of the content of the message.

So far, we are not aware of any known-plaintext attack against our proposed block cipher. Even a

plaintext-ciphertext pair is given, there is no easy way to separate the two factors, noise and permutations,

involved in the ciphertext. Likewise, a direct ciphertext analysis does not seem possible.

We can see that with the increase of L, the security of the proposed block cipher is increased. There-

fore, for an RFID system, we can tune L to provide a good trade-off between security and performance.

Moreover, except the length of plaintext messages, the block cipher illustrated in Fig. 1(a) is the same as

that illustrated in Fig. 2. This can facilitate security integration of WSNs and RFID systems.
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(a) Mutual Authentication between a Reader and a
Tag.
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(b) Mutual Authentication between a Reader and a
Tag for Binary Tree Walking Scheme.

Figure 3: LCG based Security Protocol for RFID.

4.3.3 Mutual Authentication

A very basic mutual authentication protocol in RFID is presented in Fig. 3(a). In Fig. 3(a), a reader and

a tag share secret a, b, X0, and m. To read from the tag, the reader generates a random number r1 and

starts a timer T1. r1, with a length of 2L Bytes, is sent to the tag. The purpose of T1 is to prevent potential

intruders from decrypting X1 given adequate time. After the tag receives the challenge r1, it uses the LCG

based encryption scheme to encrypt r1, denoted as LCGX1(r1). To provide its identification, the tag sends

(ID XOR LCGX1(r1)) to the reader.

To authenticate the reader, along with the encrypted r1, a new challenge r2 is needed to be sent from

the tag to the reader. In our case, to reduce the overhead on the tag side, we use X1 as the challenge,

instead of r2. Therefore, after the reader receives the message from the tag, a new message in the format

of (ID XOR LCGX2(X1)) is sent from the reader to the tag.

4.3.4 Collision Avoidance ID Authentication

In practice, there may exist collisions when a reader wants to find a specific tag [1]. A binary tree walking

scheme can be used to resolve the collisions. In this case, there may exist multiple rounds of communica-

tions between a reader and tags.

Let n denote the number of tags (leaves) in a binary tree. A node of depth d is labeled with a binary

string S of length d, and has two children with depth d+1: the left child is labeled S||0 and the right child
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is labeled S||1. The binary tree walking algorithm is a recursive depth-first search for the reader to find all

IDs of tags [1]. In this case, each tag (edge in the binary tree) is associated with a secret and this secret

is shared with the reader. We have the protocol illustrated in Fig. 3(b). In Fig. 3(b), we omit the timer to

make the figure better illustrated.

Similar to Fig. 3(a), a reader initiates to poll tags by generating a random number r1. When the reader

queries a node with binary string S, all tags whose IDs have S as the prefix respond to the next bit. Each

tag in the left subtree of the node sends 0, and each tag in the right subtree of the node sends 1. The reply

from each tag can be used by the reader to authenticate the tag. Also, the reader queries the tag with the

binary string S. This message can be used by the tag to authenticate the reader. The mutual authentication

can go to the next level after it succeeds at the current level. If the reader passes all secrets in the path, the

reader is authenticated. Note that on the tag’s side, only a sequence of X1, X2, . . . , Xn are needed. These

Xs, in turn, can be used by the tag to authenticate the reader.

4.3.5 Performance Analysis

The overhead is determined by the Number of Basic Operations our block cipher and protocol incur. We

consider Addition, XOR, Shift (1 bit), Fetch (fetch a value from the main memory to a register), and Store

(store a value in a register to the main memory) as our basic operations. To make our comparison plausible,

we consider the cost of performing one general n-bits multiplication as n
2

additions and n
2

shifts in average

on n-bit registers. Since a division can be reduced to a multiplication, we use the same estimation for the

division. Also, the same estimation is made to the general modulo.

We have some special cases: a multiplication by 2 is a left-shift operation; the operation of (n mod 32)

is considered one XOR operation (in fact, we need a bitwise AND). We consider that n basic operations

on a 32-bit-processor are equivalent to 8n basic operations on a 8-bit processor. This is because each

operation will be broken into 4 operations plus 4 store operations. This may be oversimplified since some

necessary bookkeeping such as handling the carry bits may be required, but we ignore them for simplicity.

In Table 2, the first column is the name of the basic operations. The second, third, and fourth columns

list the number of basic operations needed for a 2L bytes block, where L is 4, 8, and 16 on a 8-bit

processor, respectively. Here Op. is the abbreviation for Operation. Please note that the number of

operations presented in Fig. 2 does not include the operations to generate random numbers.
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8-bit Op. 8-bit Op. 8-bit Op.
Operation L=4 L=8 L=16
Addition 0 0 0
XOR 31 62 124
Shift 0 0 0
Fetch 31 62 124
Store 31 62 124
Total 93 186 372

Table 2: Numbers of Basic Operations in LCG-based Cipher.

Table 3 briefly analyzes the number of basic operations to generate a pseudo-random number. Here

we use L = 8. In Table 3, the first column illustrates the basic LCG operations involved in the random

number generation. The second column illustrates the number of corresponding LCG operations. The

third column lists equivalent operations on an 8-bit processor. The fourth column lists the corresponding

number of the basic operations for a 16 byte block on an 8-bit processor.

LCG Number of Equivalent 8-bit Op.
Operations LCG Op Op 2L byte
2L Byte 1 Addition 4128
Addition
2L Byte Shift 0 Shift 2048
2L Byte Fetch 4 Fetch 128
2L Byte Store 1 Store 32
2L Byte 1
Multiplication
2L Byte Moduli 1
Total 8 6304

Table 3: Numbers of Basic Operations for Generating One LCG Pseudo-Random Number when L=8.

5 Conclusions

In this article, we first briefly introduce WSNs and RFID systems. We then present their privacy and

security concerns and related solutions. We finally propose a Linear Congruential Generator (LCG) based

lightweight block cipher that can meet security co-existence requirements of WSNs and RFID systems.
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