

A Virtual Password Scheme to Protect Passwords
Ming Lei

+
, Yang Xiao

+
, Susan V. Vrbsky

+
, Chung-Chih Li

*
, and Li Liu

+

+
Department of Computer Science, The University of Alabama,
*
School of Information Technology, Illinois State University

{mlei, yangxiao, vrbsky, lliu}@cs.ua.edu, cli2@ilstu.edu

Abstract—People enjoy the convenience of on-line services, but

online environments may bring many risks. In this paper, we

discuss how to prevent users’ passwords from being stolen by

adversaries. We propose a virtual password concept involving a

small amount of human computing to secure users’ passwords in

on-line environments. We adopt user-determined randomized

linear generation functions to secure users’ passwords based on the

fact that a server has more information than any adversary does.

We analyze how the proposed scheme defends against phishing,

key logger, and shoulder-surfing attacks. To the best of our

knowledge, our virtual password mechanism is the first one which

is able to defend against all three attacks together.

I. INTRODUCTION

Users with important accounts on the Internet face many
kinds of attacks, e.g., a user ID and password can be stolen and
misused. The secure protocol SSL/TLS [1] for transmitting
private data over the web is well-known in academic research,
but most current commercial websites still rely on the relatively
weak protection mechanism of user authentications via plaintext
password and user ID. Meanwhile, even though a password can
be transferred via a secure channel, this authentication approach
is still vulnerable to attacks as follows.

• Phishing: Phishers attempt to fraudulently acquire sensitive
information, such as passwords and credit card details, by
masquerading as a trustworthy person or business in an
electronic communication [2]. For example, a phisher can
set up a fake website and then send some emails to potential
victims to persuade them to access the fake website. This
way, the phisher can easily get a clear-text of the victim’s
password. Phishing attacks have been proven to be very
effective.

• Password Stealing Trojan: This is a program that contains
or installs malicious code. There are many such Trojan
codes that have been found online today, so here we just
briefly introduce two types of them. Key loggers capture
keystrokes and store them somewhere in the machine, or
send them back to the adversary. Once a key logger
program is activated, it provides the adversary with any
strings of texts that a person might enter online,
consequently placing personal data and online account
information at risk. Trojan Redirector was designed to
redirect end-users network traffic to a location to where it
was not intended [5]. This includes crime ware that changes
hosts files and other DNS specific information, crime ware
browser-helper objects that redirect users to fraudulent sites,
and crime ware that may install a network level driver or
filter to redirect users to fraudulent locations.

• Shoulder Surfing: Shoulder surfing is a well-known method
of stealing other’s passwords and other sensitive personal
information by looking over victims’ shoulders while they
are sitting in front of terminals [12]. This attack is most
likely to occur in insecure and crowded public

environments, such as an Internet Café, shopping mall,
airport, etc. [16, 20]. It is possible for an attacker to use a
hidden camera to record all keyboard actions of a user.
Video of the user’s actions on a keyboard can be studied
later to figure out a user’s password and ID.
Many schemes, protocols, and software have been designed

to prevent users from some specified attacks. However, to the
best of our knowledge, so far, there is not a scheme which can
defend against all the types of attacks listed above at the same
time.

In this paper, we present a password protection scheme that
involves a small amount human computing in an Internet-based
environment, which will be resistant to a phishing scam, a
Trojan horse, and shoulder-surfing attacks. We propose a virtual
password concept that requires a small amount of human
computing to secure users’ passwords in on-line environments.
We adopt user-determined randomized linear generation
functions to secure users’ passwords based on the fact that a
server has more information than any adversary does. We
analyze how the proposed scheme defends against phishing, key
logger, and shoulder-surfing attacks. To the best of our
knowledge, our virtual password mechanism is the first one
which is able to defend against all three attacks together.

The idea of this paper is to add some complexity, through
user computations performed by heart/hand or by computation
devices, to prevent the three kinds of attacks. There is a tradeoff
of how complex the computation by the users can be. One goal
is to find an easy to compute but secure scheme for computing.

We believe that for some sensitive accounts such as on-line
bank accounts and on-line credit card accounts, users are likely
to choose a little additional complexity requiring some degree of
human computing in order to make the account more secure.

The rest of the paper is organized as follows. We describe
related work about password protection in Section II. In Section
III, we propose the virtual password scheme. We propose a
randomized linear generation function in Section IV. In Section
V, we describe implementation issues of our scheme. Finally, we
conclude our paper and describe our future work in Section VI.

II. RELATED WORK

Phishing attacks are relatively new but very effective. There
are two typical types of Phishing. First, to prevent Phishing
emails [27, 29, 30], a statistical machine learning technology is
used to filter the likely Phishing emails; however, such a content
filter doesn’t work correctly all the time. Blacklists of
spamming/phishing mail servers are built in [31, 32]; however,
these servers are not useful when an attacker hijacks a virus-
infected PC. In [11, 24, 25], a path-based verification has been
introduced. In [14], a key distribution architecture and a
particular identity-based digital signature scheme have been
proposed to make email trustworthy. Secondly, to defend against
Phishing websites, the authors in [21, 33] have developed some
web browser toolbars to inform a user of the reputation and

origin of the websites which they are currently visiting. In [6, 7,
8, 9, 10], the authors implement password hashing with a salt as
an extension of the web browser [6, 9, 10], a web proxy[13], or a
stand alone Java Applet [15]. Regardless of the potential
challenges considered in an implementation, such password
hashing technology has a roaming problem and other problems.

Unlike Phishing, malicious Trojan horses, such as a key
logger, are not attacks, and sophisticated users can avoid them.
Such programs are also easy to develop [17] and there is a great
deal of freeware that you can download from the internet to
prevent them.

Alphanumeric password systems are easily attacked by
shoulder-surfing, in which an adversary can watch over the
user’s shoulder or record the user motions by a hidden camera
when the user types in the password. In [22], the authors adopt a
game-like graphical method of authentication to combat
shoulder-surfing; it requires the user to pick out the passwords
from hundreds of pictures, and then complete rounds of mouse-
clicking in the Convex Hull. However, the whole process needs
the help of a mouse and it takes a long time. In [23], the authors
propose a scheme to ask a user to answer multiple questions for
each digit. In this way, it is resistant to shoulder-surfing only to a
limited degree, because if an adversary catches all the questions,
then they will know what the password is. In [23], a game-based
method is designed to use cognitive trapdoor games to achieve a
shield for shoulder-surfing. The author in [26] has filed a patent
to allow a user to make some calculations based on a system
generated function and random number for the user to prevent
password leaking. However, the scheme in [26] is not anti-
Phishing and the password can possibly be stolen if an adversary
uses a camera to record all the screens of the system and motions
of the victim. Any of the schemes above cannot prevent against
Phishing, Trojan horse, and shoulder-surfing at the same time.

III. VIRTUAL PASSWORD

A. Virtual Password Concept

To authenticate a user, a system (S) needs to verify a user
(U) via the user’s password (P) which the user provides. In this
procedure, S authenticates U by using U and P, which is denoted
as: S �U: U, P. All of S, U, and P are fixed. It is very
reasonable that a password should be constant for the purpose of
easily remembering it. However, the price of easy to remember
is that the password can be stolen by others and then used to
access the victim’s account. At the same time, we can not put P
in a randomly variant form, which will make it impossible for a
user to remember the password. To confront such a challenge,
we propose a scheme using a new concept of virtual password.

A virtual password is a password which cannot be applied
directly but instead generates a dynamic password which is
submitted to the server for authentication. A virtual password P
is composed of two parts, a fixed alphanumeric F and a function
B from the domain ψ to ψ, where the ψ is the letter space which
can be used as passwords. We have P=(F, B) and B(F, R) = Pd,
where R is a random number provided by the server (called the
random salt and prompted in the login screen by the server) and
Pd is a dynamic password used for authentication. Since we call
P=(F, B) a virtual password, we call B a virtual function. The
user input includes (ID, Pd), where ID is user ID. On the server
side, the server can also calculate Pd in the same way to compare
it with the submitted password.

It is easy for the server to verify the user, if B is a bijective
function. If B is not a bijective function, it is also possible to

allow the server to verify the user as follows. The server can first
find the user’s record from the database based on the user’ ID,
and compute Pd, and compare it with the one provided by the
user. A bijective function makes it easier for the system to use
the reverse function to deduce F’s virtual password.

The user should be free to pick the fixed part of the virtual
password. We propose a differentiated security mechanism in
the next section to allow the user to choose the virtual function.

B. Virtual Password Usage

We have introduced the concept of the virtual password, and
next, we detail how to apply it in an internet-based environment.

To use a virtual password, human computing is involved or a
handhold device which can be programmed to compute the
dynamic password is needed. We could develop a smart
application to make the complex calculation for the user, which
can run at the mobile device, such as a cellular phone, PDA,
personal computer, or programmable calculator, to relieve the
user from the complicated calculations and to overcome any
short-term memory problem. If such a helper-application is
involved, we should make sure that the helper-application itself
should be unique to each user account and only work for the
corresponding user account.

Regardless of the approach chosen, a user’s registration in
the system is similar, i.e., the user submits a user ID and
password. The one difference from a traditional approach is that
in the virtual password scheme, there is a virtual function, which
is a must, to be set during the registration phase.

The server then delivers this function information to the user
via some channels, such as, displaying it on the screen or email.
The user needs to remember this function together with the
password they have chosen or save them in disks or emails. The
user-specified password and the system-generated function are
combined into a virtual password.

We also notice that a small amount of human-computing is
involved in the authentication process. We have to choose B to
make the calculation as simple as possible if the helper-
application is not used. A user has to remember both the fixed
part and the function part, and as a result will require a little bit
more effort to remember. However, the virtual password will be
resistant to a dictionary attack, which is mostly caused by the
fact that users like to create a password which is either related to
their own name, date of birth, other simple words, etc.

In a traditional password scheme, users can change their
password, and this is also true in our virtual password scheme.
Different from the traditional scheme, users can change the fixed
part of the virtual password or the virtual function, or even both.

C. Virtual Function with a Helper-Application

If a helper-application application is available for the user,
the user needs to type the random salt into the helper-application,
and subsequently, the dynamic password is generated by the
helper-application. Then the user types in the generated dynamic
password in the login screen. In this way, the extra time required
is very small and the precision will be one hundred percent
correct as long as the user types the correct random salt
displayed on the login screen.

This works for the case when the user has a mobile device,
such as a cellular phone or PDA. However, such mobile devices
are not able themselves to communicate with the server to which
the user wants to login. No matter how complex the virtual
function is, the helper-application can always generate the
correct dynamic password for the user. This case is the most

sophisticated one, and it is also the most convenient approach for
the user.

For password changing, the user only needs to get a new
helper-application after the password change instead of
remembering all the changed parts of the virtual password. Note
that the server must make the corresponding changes too.

A one-way hash function and many of their functions (such
as known encryption algorithms) can serve as virtual functions.

If we further assume that the helper-application can
communicate with the server, the user only needs to type the
random salt in the helper-application, and then the rest of the
work is done by the helper-application. The helper-application
can generate the dynamic password and submit the login request
associated with the user account information, which can be built
into the helper-application for the corresponding user. For
password changing, if the helper-application can communicate
with the server, there is a better way to a change password and
make the password more secure, i.e., the helper-application can
periodically make the password change request to the server and
update the corresponding virtual password built into the helper-
application. The whole process can be completely transparent to
the user.

D. Virtual Function without a Helper-Application

If there is no helper-application for a user, the user needs to
calculate the dynamic password from the virtual function with
the inputs, random salt and the fixed part of the virtual password.
The whole login process may take a little bit longer because it
requires the user to perform some calculations. This must work
for the user who has no mobile device, so in that case, the virtual
function should not be too complicated for human computing.

For password changing, it is similar to traditional password
changing. The user can choose a new password, which is the
fixed part of the virtual password or a new virtual function, or
both. After such changes, the user needs to remember the new
virtual password.

The virtual function plays a critical role in the virtual
password. There are an infinite number of virtual functions, so
that designing an appropriate function is very critical to the
success of our scheme.

In order to defend against Phishing, key-loggers, and
shoulder-surfing while the system is authenticating the user, this
function should meet the following criteria:

• The function should have some random input provided by
the server, which then allows the users to type in different
inputs each time they log in the system. This ensures the
key logger can not steal the password because the real
password is not typed and the typed inputs change each
time.

• The function should be easy for the users. To make the
system more secure, we could increase the complexity of
the virtual function. However, this resulting function may
be very difficult to remember or utilize. The objective is to
design less complex but secure virtual functions.

• The function should be unobservable, i.e., the observed
password the user types in for the login session does not
disclose hidden secrets; therefore, adversaries cannot use
the stolen information to login to the system.

• The function should be insolvable, i.e., the adversaries
should not be able to solve the function with all the
potential information they are able to obtain.
There are some functions which meet all the requirements

which we listed above.

IV. RANDOMIZED LINEAR GENERATION FUNCTION

In this section, we propose examples of a bijective virtual
function and analyze how it secures a user password. However,
our proposed approach is not limited by these examples. We
consider digits here as an example, but our scheme is not limited
in the number of digits, nor is it even limited to using only digits.

A. Linear Function

We consider the linear function:

[]() () mod
i i i

B x a x y c Z= + + (1)

where a and Z are relatively prime, xi is one digit from the

fixed part of the user’s virtual password, yi is one random digit
provided by the system, and a and c are the constant factors of
the linear function, which the user has to remember. The B(xi) is
a bijective function if and only if gcd(a, Z) =1 [28], where gcd
denotes the Greatest Common Divider function.

In fact, we can prove that this function can stand for
Phishing, key logger, and shoulder-surfing attacks by the follow
security analysis. Let x1x2…xn and [a(xi+yi)+c] mod Z denote the
user’s virtual password, where y=y1y2..yn is random number
provided by the system/server.

• Defense against Phishing: For Phishing, once a user is lured
to type in the dynamic password (x1x2…xn) in the faked
page, then the dynamic password will be recorded by the
adversaries. However, we claim that this does not help the
adversaries to figure out the virtual password of the user,
because it is impossible to get the solution of x1x2…xn, a,
and c based on the information they have stolen. We can
present the digits the Phisher caught in the form of
equations and there are n equations the Phisher can build as:
[a(xi+yi) + c] mod Z=k1, (for i=1,…n), where y1 to yn and
k1 to kn are known by the Phisher. However, since there are
n+2 variables (a, c and x1 to xn), but only n equations, it is
impossible to solve the equations to get the solution.
Therefore, we claim that our scheme is phishing-proof.

• Defense against the key logger: The key logger code logs all
the key strokes at the operating system level so that such
logs are delivered to some adversaries who analyze what the
victim has keyed in their system, and then try to extract the
user password. Such a key logger will be very effective if
the user typed their password in an unsafe machine on
which the key logger is installed. In our scheme, the key
logger can still catch the entire user’s key strokes, but they
still need to solve the above mentioned n equations, where
the only variables the logger can be aware of are k1 to kn.
We also assume that the user does not add some noise into
the logger as [17]. If noises are created, we claim that the
adversaries are not able to have the equations at all. Even if
they build the equations; they cannot solve the function
because the available knowledge for the adversaries is not
enough.

• Defense against the shoulder-surfing: To protect user from
the shoulder-surfing, we assume that the watchers have a
good memory or they use some other devices, such as a
camera, to record all the information that the user will use,
including the random digits that the system provides in the
screen and the keys the user types into the password field.
With the help of the virtual password, at the prospective of
the watchers, the information available to them are the
dynamic password k1k2...kn and the random digits y1y2...yn.
The watcher will face the same challenge that the Phisher

encounters, and will have difficulty in solving the above
mentioned n equations.
We have claimed that function (1) will protect the user from

a Phishing attack, key loggers, and shoulder-surfing. However,
we later found out that function (1) has at least one drawback,
e.g., it cannot stand for multiple attacks as follows.

• Challenge for multiple attacks: if the user is lured to try to
login to any same phishing website more than twice, it will leak
his/her password. Suppose that Bob has a set up a Phishing
website abc.com and Alice is a user of the website with
password k1k2…kn with equation (3). Now if Alice tries to login
twice to the Phishing website abc.com, Bob can compare the
dynamic passwords which Alice input, and then Bob can easily
figure out how to login to the real website with Alice’s account.
The reasons are explained as follows. For any given i

th
 digit of

the fixed part of Alice’s virtual password, if Alice has tried more
than twice to login to the fake website, then Bob could obtain the
two equations below: [a (xi+yi) + c] mod Z=ki, and [a(xi+yi

'
)+

c] mod Z=ki
'
. Now Bob can know that [a(yi

'
- yi)] mod Z= (ki

'
-

ki) mod Z, and as a result, it can calculate a. After a is identified
by the adversary, the system is broken. Then Bob can use
Alice’s account to login to the real website in the following way.
For the i

th
 digit, Bob can just type in (ki +a(yi

''
-yi)) mod Z, where

ki is the first time Alice typed in the i
th
 digit in the fake website,

yi is the i
th
 random digit provided by the fake website, and yi

''
is

the i
th
 digit the system will display on the screen, which Bob

needs to login to Alice account.
Such leaking can also occur in shoulder-surfing if the

watcher can record all the information for the same victim twice.
We then propose a function that uses the value of a digit in

the dynamic password to calculate a subsequent digit in the
dynamic password. We call this new function a randomized
linear generation function:

1 1 1 2

1 1

mod , 1
()

 mod , 2, ...,

()

()
i i i i i

k Z i
x
i k k y Z i n

ax y x c
B

a x c x− +

=
=

+ =

= + + + 


= + + +
 (2)

where a is a constant which the user needs to remember but c is
not. The most interesting part of the function is that c will be a
random number which the user randomly picks each time when
the user tries to login to the system. Since gcd(a, Z)=1, the
above function is also a bijective function regardless of the c
value. Because c is also unknown to server, the server knows

that c ∈{0,1,…,Z-1}. The authentication could be done as
follows.

Let B
-1
(x) be the reverse function of B(x). After the server

gets the user’s keyed dynamic password k1k2...kn, and the fixed
part of the virtual password of the user, x1x2…xn, the server can
perform the following verification:
Verify()

{For each digit {0,1,...,Z-1}u∈ {

For each digit in the dynamic password the user typed
{wi =B

-1
(ki,u)}

if (w1w2…wn= x1x2…xn) return true}
Return false
}

The algorithm above guarantees that if the user has input the
correct password, the system will grant him/her entrance
whatever the random number he/she picked. However, it is also
true that for each user, there will be multiple (exactly Z)
acceptable dynamic passwords existing for each specific login
session. This may increase the probability that the adversary’s
random input happens to be the correct password. However, if

the length of your password is long enough, the probability is
very small, i.e., Z/2

n
, where n is the length of the password.

A scheme with equation (2) can defend against Phishing,
keylogger, shoulder-surfing, and multiple attacks as follows.

• Defense against Phishing, keylogger, and shoulder-surfing:
It protects the user’s from password stealing based on the
same theory that the adversary cannot solve the function
because the adversary does not have enough information.
We only use Phishing as an example here. We now list the
following equations: k1=(ax1+y1+ x2+c) mod Z and ki=(aki-1
+yi+xi c+xi+1) mod Z (i=2,…,n). For the Phisher, the c, a,
x1, …, xn are unknown, and they only know the k1k2..kn and
y1y2…yn, so that they cannot solve the function to get the
solution. These similar unsolvable equations exist against
key loggers and shoulder-surfing.

• Defense against multiple attacks: We claim that multiple
dynamic password leaking in the virtual password scheme
with a linear generation function can be secured using a
random number. If an adversary has tricked a user into
logging into his fake website twice, the adversary obtains
k1=(ax1+y1+ x2+c) mod Z and k1

'
=(ax1+y1

'
+ x2+c') mod Z,

where a, m1, c, and c' are unknown to the adversary, and
then what information the adversary can figure out is the (c'-
c) mod Z=(y1'-y1)+(k1'-k1). Since the c and c' were randomly
chosen by the user, (c'-c) does not provide any information.
If the adversary cannot work out some clue about the first
digit of the dynamic password k1, he/she cannot find about
k2 and the later digits in the dynamic password. Therefore,
using the linear function with a random number can remove
the possibility of multiple dynamic password attacks.

V. IMPLEMENTATION AND EVALUATION

In order to implement the virtual password scheme to
safeguard users when they are surfing online, we implemented
the scheme, and demonstrate that a little human computing can
defeat Phishing, key logger and shoulder-surfing attacks. In this
section we will evaluate our practical implementation of the
virtual password scheme.

A. Screenshots of System Implementation

We just implemented a simple scheme for illustration
purposes, e.g., the randomized linear function. With the
consideration of user usability, we set Z=10, so that the available
values for a are {1, 3, 7, 9}. This does not decrease the scheme’s
security due to the limited value of a, since in the linear
generation function, the value of the dynamic password will rely
heavily on the random c. The function

1
1
) mod 10(.n n n n

n
K K ya x c x−

+
+= + + + may be too difficult

for users to calculate in their mind, especially since Kn-1 is hard
to remember. In our implementation, we will allow the system to
display the password file without marking the content as “*”,
which will make it easier for the user to know the previous digit
he/she has entered. In Fig. 1, we demonstrate a testing website in
which a virtual password scheme was implemented.

Even though such a calculation is a little complicated for
some people, our helper-applications could relieve the users of
this required human computing. In Fig. 2 and Fig. 3, we
implement two versions of such helper-applications for a
personal computer and a mobile device, respectively.

Fig. 1 Testing website login page

Fig. 2 Helper-Application for Personal Computer

Fig. 3 Helper-Application for Cell Phone.

B. Password-security survey for users’ reponses

Currently, most of the websites allow a user to have only one
fixed unique password. In our scheme, however, the password is
dynamic and a user needs to make some computations for each
login if the user has not installed the helper-application, which is
significantly different from the traditional way that the user just
inputs a password. The traditional way may seem more
comfortable to the user, but the price of such comfortableness is
that the password could be stolen by adversaries. If considering
the fact that users tend to pick passwords that are usually used in
cross-systems for easy recall, or those related to the users’
privacy, such as DOB, nick name, and so on, the traditional
password is more vulnerable. Although it is tedious for users to
make some calculations each time to login to the system, the
well trained user can finish the entire login process in a short
time.

We distributed a survey (Figs.4 -10) to collect users’
responses for our system implementation with a total of 86
responses. We found that the respondents have an average of 10
or more online accounts, as shown in Fig.4, but the majority of
them are unaware of how to defend against Phishing, Key
loggers, and Shoulder-surfing. Meanwhile, many of the

respondents have no idea about what the three attacks are as
illustrated in Figs 5-7. This severe fact indicates that it is urgent
to take some action to protect innocent users from those types of
attacks. As shown in Fig.8, we also found that most of the
people could complete the single digit calculation easily, without
help from the calculator. This makes our virtual password
scheme applicable even for people who do not have any mobile
devices with them. As we described in the previous section, we
could design some simple bijective function as a randomized
generation function to allow for easy human computing. In Figs.
9 and 10, respondents express their demand for a more secure
internet and most of them would accept the cost of spending a
little more extra time to sign onto the system for an improvement
in password security. We argue that the extra time will be
acceptable to most of the people based on Fig. 8. Furthermore, if
the helper-application is available for users, the extra time will
be very small, and there is no extra time at all if a user’s mobile
device can communicate with the server.

1-5

28%

6-10

44%

11-20

18%

>20

10%

Fig. 4 How many online account you have?

No idea at

all

32%

I’ve heard

of it

22%

 Know it

but don’t

know how

to defend

23%

Know it

and know

how to

defend

23%

Fig. 5 Knowledge about Phishing attack

No idea at

all

45%

Know it

and know

how to

defend

18%

 Know it

but don’t

know how

to defend

22%

I’ve heard

of it

15%

Fig. 6 Knowledge about Key logger attack

No idea at

all

68%

I’ve heard

of it

11%

 Know it

but don’t

know how

to defend

8%

Know it

and know

how to

defend

13%

Fig. 7 Knowledge about Shoulder-surfing Attack

very easy

54%

Dif f iculty

w ithout

calculator

1%

easy

w ithout

calculator

30%

Okay

w ithout

caculator

15%

Fig. 8 How comfortable to do the single digit calculation?

Much

needs to

improve

20%

need some

improveme

nts

48%

urgently

greatly

improve

needed

18%

Secure

enough

14%

Fig. 9 Current internet secure enough to protect your password?

no

8% don't care

14%

Yes,I

w ould

39% Yes,depe

nd on the

extra time

cost

39%

Fig. 10 Would you like to improve your password Security with a little bit extra

time?

VI. CONCLUSION

In this paper, we discussed how to prevent users’ passwords
from being stolen by adversaries. We proposed a virtual
password concept involving a small amount of human
computing to secure users’ passwords in on-line environments.
We adopted user-determined randomized linear generation
functions to secure users’ passwords based on the fact that a
server has more information than any adversary does. We
analyzed how the proposed scheme defends against phishing,
key logger, and shoulder-surfing attacks. We also implemented
the system to do some tests and survey feedback indicates the
feasibility of such a system.

REFERENCE
[1] T. Dierks and C. Allen. The TLS Protocol— Version 1.0. IETF RFC

2246,January 1999.

[2] http://en.wikipedia.org/wiki/Phishing

[3] Anti-phishing working group. http://www.antiphishing.org.

[4] http://en.wikipedia.org/wiki/Key_logger

[5] http://www.eweek.com/article2/0,1895,1940623,00.asp

[6] B. Ross, C. Jackson, N. Miyake, D. Boneh, J. Mitchell, “Stronger
Password Authentication Using Browser Extensions,” Proceedings of 14th
USENIX Security Symposium.

[7] E. Gaber, P. Gobbons, Y. Mattias, and A. Mayer, “How to make
personalized web browsing simple, secure, and anonymous,” Proceedings
of Financial Crypto ’97, volume 1318 of LNCS.Springer-Verlag, 1997.

[8] E. Gabber, P. Gibbons, D. Kristol, Y. Matias, and A. Mayer, “On secure
and pseudonymous user-relationships with multiple servers,” ACM
Transactions on Information and System Security, 2(4):390–415, 1999.

[9] E. Jung. Passwordmaker. http://passwordmaker.mozdev.org.

[10] J. la Poutr′e, “Password composer,”

 http://www.xs4all.nl/?jlpoutre/BoT/Javascript/PasswordComposer/.

[11] J. R. Levine, “A Flexible Method to Validate SMTP Senders in DNS,”
Apr. 2004. http://www1.ietf.org/proceedings_new/04nov/IDs/draft-levine-
fsv-01.txt.

[12] V. A. Brennen, "Cryptography Dictionary," vol. 2005,1.0.0 ed, 2004.

[13] http://www.bell-labs.com/project/lpwa/

[14] E. Damiani et al., “Spam Attacks: P2P to the Rescue,” Proceedings of
Thirteenth International World Wide Web Conference, pages 358–359,
2004.

[15] M. Abadi, L. Bharat, and A. Marais, “System and method for generating
unique passwords,” US Patent 6,141,760, 1997.

[16] M. Kuhn, “Probability theory for pickpockets – ec-PIN guessing,”
Available at http://www.cl.cam.ac.uk/?mgk25/, 1997.

[17] C. Herley and D. Florencio, “How To Login From an Internet Caf′e
Without Worrying About Keyloggers,” Proceedigns of Symposium on
Usable Privacy and Security (SOUPS) ’06

[18] http://www.citibank.co.jp/en/service/cap/virtualpad/

[19] http://obr.typepad.com/financial_innovations/2005/11/ing_direct_adds.ht
ml

[20] M¨OLLER, B. Schw¨achen des ec-PIN-Verfahrens. Available at
http://www.informatik.tu-darmstadt.de/TI/Mitarbeiter/moeller, Feb. 1997.
Manuscript.

[21] A. Herzberg and A. Gbara, “Trustbar: Protecting (even naive) web users
from spoofing and phishing attacks,” Cryptology ePrint Archive, Report
2004/155, 2004. http://eprint.iacr.org/2004/155.

[22] S. Wiedenbeck, J. Waters, L. Sobrado, and J. Birget, “Design and
evaluation of a shoulder-surfing resistant graphical password scheme,”
Proc. of the working conference on Advanced visual interfaces,Venezia,
Italy.

[23] V. Roth, K. Richter, and R. Freidinger, “A PIN-entry method resilient
against shoulder-surfing,” Proc. of the 11th ACM Conference on
Computer and Communications Security, 2004,236-245.

[24] IETF. MTA Authorization Records in DNS (MARID),June 2004.
http://www.ietf.org/html.charters/OLD/marid-charter.html.

[25] G. Ateniese, K. Fu, M. Green, and S. Hohenberger, “Improved Proxy Re-
encryption Schemes with Applications to Secure Distributed Storage,”
Proceedings of the 12th Annual Network and Distributed System Security
Symposium,2005.

[26] G. T. Wilfong, “Method and apparatus for secure PIN entry,” US Patent
#5,940,511, United States Patent and Trademark Office, May 1997.
Assignee: Lucent Technologies, Inc. (Murray Hill, NJ).

[27] J. Mason, “Filtering Spam with SpamAssassin,” Proceedings of HEANet
Annual Conference, 2002.

[28] D. Stinson, Cryptography Theory and Practice, Second Edition.

[29] M. Sahami, S. Dumais, D. Heckerman, and E.Horvitz, “A Bayesian
Approach to Filtering Junk E-Mail.In Learning for Text Categorization,”
The 1998 Workshop, May 1998

[30] T.A. Meyer and B. Whateley, “SpamBayes: Effective open-source,
Bayesian based, email classification system,”

[31] MAPS. RBL - Realtime Blackhole List, 1996.http://www.mail-
abuse.com/services/mds_rbl.html.

[32] The Spamhaus Project. The Spamhaus Block
List.http://www.spamhaus.org/sbl/.

[33] Netcraft. Anti-Phishing Toolbar.
http://news.netcraft.com/archives/2004/12/28/netcraft_antiphishing_tool%
bar_available_for_download.html.

[34] A. Perrig, R. Szewczyk, J. D. Tygar, V. Wen, and D. E. Culler. SPINS:
security protocols for sensor networks. Wireless Networking, 8(5):521–
534,2002.

