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a b s t r a c t

Recent advances in wireless networks and embedded systems have created a new class of pervasive systems
such as Wireless Sensor Networks (WSNs) and Radio Frequency IDentification (RFID) systems. WSNs and
RFID systems provide promising solutions for a wide variety of applications, particularly in pervasive com-
puting. However, security and privacy concerns have raised serious challenges on these systems. These con-
cerns have become more apparent when WSNs and RFID systems co-exist. In this article, we first briefly
introduce WSNs and RFID systems. We then present their security concerns and related solutions. Finally,
we propose a Linear Congruential Generator (LCG) based lightweight block cipher that can meet security co-
existence requirements of WSNs and RFID systems for pervasive computing.

Published by Elsevier B.V.

1. Introduction

Recent advances in wireless networks and embedded systems
have created a new class of pervasive systems such as Wireless
Sensor Networks (WSNs) and Radio Frequency IDentification
(RFID) systems. WSNs and RFID have made a variety of new and
exciting applications, particularly for pervasive computing. For
example, WSNs have been used in areas such as health monitoring,
scientific data collection, environmental monitoring, and military
operations. RFID systems have become more and more popular
to provide automatic identification systems in areas such as supply
chain management, payment systems, manufacturing, and inven-
tory control [1]. The integration of WSNs and RFID systems has also
opened up new opportunities in the areas such as healthcare sys-
tems and wireless telemedicine.

WSNs usually comprise a large number of inexpensive, small,
and battery-powered sensor nodes. One representative sensor
node is Berkeley-designed A2 Motes. Equipped with wireless com-

munication modules and microcontrollers, each sensor node can
monitor physical or environmental conditions, such as tempera-
ture, light, acoustic, etc., and collaborate to transmit data to a base
station. WSNs are usually resource-constrained on processing
power, memory, bandwidth, and energy consumption. For exam-
ple, powered by 2 AA batteries, MICA2 Motes consist of an
8 MHz 8-bit Atmel ATMEGA128L CPU with only 4 KB RAM for data,
128 KB program memory, 512 KB flash memory, and 38.4 kbps
data rate ratio.

RFID systems usually consist of simple and low-cost RFID tags,
more powerful RFID readers, and a database which stores records
associated with tag contents. Generally, a reader broadcasts an RF
signal within a certain wireless range to access digital data stored
in tags. Powered by a signal from an RFID reader or an internal bat-
tery, tags can respond to the reader by replying with information
such as object identification data. Because tags are usually manufac-
tured on a massive scale and any additional circuitry in tag design
may incur extra cost, tags should be kept as lightweight as possible.
For example, one tag in the form of Electronic Product Codes (EPC)
may only contain 128–512 bits of read-only storage, 32–128 bits
of volatile read-write memory, and 1000–10,000 gates [5].

Unfortunately, the wide deployment of these low-cost devices
is often subject to various kinds of attacks and thus raises serious
security and privacy concerns. For example, WSNs are often de-
ployed in untrusted or hostile environment such as battlefield to
perform mission-critical tasks, in which an adversary can eaves-
drop traffic, inject malicious messages, replay old messages, and
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so on. The pervasive deployment of tags makes RFID systems suffer
from security threats such as tracking, hotlisting, and profiling [3],
which render tag data susceptible to an unauthorized reader and
allow an adversary to gather private information illegally. The ex-
treme resource-constrained nature of tags also makes it possible
for attackers to insert a forgery or counterfeiting tag into an RFID
system without being detected. All these vulnerabilities indicate
that WSNs and RFID systems are not readily to be deployed for
security-sensitive tasks without first addressing their security
problems. Moreover, with the emergence of exciting applications
such as wireless telemedicine, the co-existence of WSNs and RFID
systems poses even more challenges for suitable security
mechanisms.

In this article, we first briefly introduce WSNs and their security
and privacy issues and related solutions in Section 2. We then
briefly discuss RFID systems and their security issues and related
solutions in Section 3. We demonstrate that existing security solu-
tions do not consider co-existence issues of WSNs and RFID sys-
tems. In Section 4, we propose a Linear Congruential Generator
(LCG) based lightweight block cipher that can meet security co-
existence requirements. Based on LCG, we also present suitable
security protocols for WSNs and RFID systems and analyze their
performance in Section 4. It should be noted that this article does
not intend to address integration issues (such as network architec-
ture, networking protocols, etc.) of WSN and RFID systems. Instead,
we aim at providing co-existent security solutions for such sys-
tems, i.e., we consider consistency and integration of the security
protocols for WSNs and RFID systems.

2. Wireless sensor networks

One WSN may be composed of hundreds or thousands of min-
iature sensor nodes, or motes, which are fitted with an on-board
processor. The low-cost battery-powered sensor nodes have extre-
mely limited energy supply, stringent processing and communica-
tions capabilities, and scarce memory.

Sensor nodes are usually densely deployed in a sensor field in
order to continuously monitor surrounding areas. In a sensor appli-
cation, each sensor has the capability to collect data such as tem-
perature, humidity, light condition, and so on, depending on
targeted applications. After sensor nodes collect data, they can lo-
cally carry out some simple computations, and collaboratively
route data to a base station for analysis. A base station may be a
fixed node or a mobile node capable of connecting WSNs to a com-
munications infrastructure (for example, the Internet) where users
can have access to reported data. In order to reduce the amount of

raw data transmitted to a base station and to save energy, sensor
nodes often need to perform aggregation operations so that only
processed information, for instance, the mean, max, or min of
sensed raw data, is transmitted. One example of sensor networks
is illustrated in Fig. 1.

2.1. Security and privacy issues and solutions for WSNs

The lack of physical security combined with unattended opera-
tions make sensor nodes prone to a high risk of being captured and
compromised. The wireless broadcast nature may result in privacy
breaches of sensitive information during data transmission. There-
fore, security and privacy issues of WSNs have attracted a lot of re-
search efforts. In the following, we list a brief taxonomy of WSN
attacks and their representative solutions.

2.1.1. Attacks

� Physical attacks: Sensor nodes may be left unattended for a long
time. Therefore, attackers may have a high chance to compro-
mise WSN nodes. From the hardware perspective, attackers
can gain complete access to microcontrollers in sensor nodes
and thus obtain sensitive information stored in node memory.
From the software perspective, TinyOS [18], the most widely
used Operating System in WSNs, and various applications may
also suffer from well-know exploitations such as buffer over-
flow. All these enable attackers to extract relevant secrets, and
insert malicious data to the network very easily.

� Attacks at physical layer: Jamming is one of the most important
attacks at physical layer. Aiming at interfering with normal
operations, an attacker may continuously transmit radio signals
on a wireless channel. Equipped with a powerful node, an
attacker can send high-energy signals in order to effectively
block wireless medium and to prevent sensor nodes from com-
municating. This can lead to Denial-of-Service (DoS) attacks at
the physical layers.

� Attacks at link layer: The functionality of link layer protocols,
such as those specified in 802.15.4/ZigBee standards, is to coor-
dinate neighboring nodes to access shared wireless channels
and to provide link abstraction to upper layers. Attackers can
deliberately violate predefined protocol behaviors at link layer.
For example, attackers may induce collisions by disrupting a
packet, cause exhaustion of nodes’ battery by repeated retrans-
missions, or cause unfairness by abusing a cooperative MAC-
layer priority scheme [6]. All these can lead to DoS attacks at
the link layers.

Fig. 1. One example of wireless sensor networks.
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� Attacks at network layer: In WSNs, attacks at routing layer may
take many forms. For example, routing control packets
exchanged among sensor nodes can be spoofed, replayed, or
altered. In this way, routing logic can be compromised. Data
packets may also be selectively dropped, replayed, or modified
by compromised nodes. Besides these, WSNs also suffer from
wormhole and sinkhole attacks, in which messages may be
lured or tunneled to a particular area through compromised
nodes. Attackers may also launch Sybil attack. Therefore, a single
node may present multiple identities to other nodes in a
network.

� Attacks targeting at WSN services and applications: In this respect,
we use localization and aggregation as examples.

Accurate locations play a critical role in many WSN applications.
For example, location information can be used in geographic routing
protocols to facilitate sensor nodes to make routing decisions based
on their own and their neighbors’ locations. To enable location dis-
covery protocols, WSNs are equipped with beacon nodes, which of-
ten know their own locations and can transmit location references to
other sensor nodes that do not have location information. Location
references contain locations of beacon nodes. Based on received
known locations and features of received signals, other sensor nodes
can then apply various algorithms to estimate their locations. Basi-
cally there are two types of localization protocols: range-based
and range-free. In range-based protocols, absolute point-to-point
distance or angle estimates can be applied to calculate location.
Range-free protocols have no such assumptions. Unfortunately,
most of the proposed localization schemes become target of attacks.
For example, an adversary may compromise a beacon node to pro-
vide incorrect location references, replay beacon packets previously
intercepted at other locations, or manipulate beacon signals to pro-
vide incorrect beacon signals. Therefore, sensor nodes may be misled
to derive totally wrong locations. This results in a significant nega-
tive impact on relevant applications.

Aggregation has been proven to be an important primitive to re-
duce communication overhead and to save energy for WSNs. The
aggregation node can collect raw data from a subset of sensor
nodes and aggregate (for example, average, sum, min, max) the re-
ceived raw data and transmit them out toward a base station.
However, an adversary can easily compromise one or more aggre-
gation nodes and thus insert bogus readings or nonexistent events
into the networks.

2.1.2. Defense mechanism
We summarize representative countermeasures for above men-

tioned attacks. These countermeasures aim at protecting the integ-
rity, authenticity, and confidentiality of WSNs.

� Key management and trust setup: One research problem is how to
set up secret keys and bootstrap secure communications among
sensor nodes in WSNs. To do so, a wide variety of key manage-
ment schemes have been proposed. The first approach is based
on trusted-server scheme, in which a trusted server is responsi-
ble for key agreement among nodes. However, because a trusted
server is not a suitable assumption for WSNs, this approach is
not desirable. The second type of approaches is public-key based
schemes, in which asymmetric cryptography is used. However,
because sensor nodes are often resource-constrained, this type
of approach is not suitable either. The third type of approaches
is based on key-predistribution schemes, where key information
is distributed among all nodes prior to deployment. Key-predis-
tribution schemes seem most appropriate for WSNs. Therefore,
we list several representative approaches in the following.Esc-
henauer et al. propose a random key-predistribution scheme,
in which each sensor node receives a random subset of keys

(called key rings) from a key pool before deployment. Relying
on probabilistic key sharing, two sensor nodes can find one sin-
gle common key within a key ring to act as a shared key secret.
Based on Eschenauer’s scheme, there are more research work
with further security enhancement and more security analysis.
For example, Chan et al. propose a ”q-composite” scheme, in
which q common keys are needed, instead of just one. Therefore,
Chan’s scheme increases the resilience of WSNs against node
capture. Chan’s scheme needs the same amount of key storage,
while requiring attackers to compromise many more nodes.
With a little more computation overhead and without using
too much additional memory, Du et al. further propose to
improve network resilience based on Eschenauer’s scheme.
Zhu et al. propose Localized Encryption and Authentication Pro-
tocol (LEAP), in which sensor nodes are preloaded with initial
keys, from which further keys can be established to set up differ-
ent keys for future usage. Utilizing deployment knowledge
which may be available a priori, Du et al. also propose a random
key-distribution scheme which can guarantee that any two
neighboring nodes can find a common secret key with a certain
probability [9] [10]. With the recent progress of sensor plat-
forms, there is an emerging trend to demonstrate that public
key cryptography, such as RSA and Elliptic Curve Cryptography
(ECC), may be feasible for WSN related security applications.
With optimized implementation of RSA and ECC, it now
becomes reasonable to run public key techniques on popular
sensor nodes. This makes public key based key management
schemes a desirable candidate for WSNs. Liu et al. [11] also pro-
pose schemes to detect misused keys in WSNs.

� Secrecy and authentication: Based on established keys, these are
various kinds of authentication and privacy mechanisms in
WSNs. For example, TinySec [7], a software based lightweight
encryption mechanism, offers a feasible and efficient security
solution for WSNs at the link layer. In this option, using a block
cipher based on Skipjack, each packet is encrypted and
appended a Message Authentication Code (MAC) to achieve
message integrity and confidentiality.In WSNs, an end-to-end
encryption scheme is usually impractical. Instead, trust can be
set up between neighboring nodes and a hop-by-hop encryption
can then be performed. For example, with the help of symmetric
cryptography techniques, an Interleaved Hop-by-Hop Authenti-
cation (I-LHAP) [12] scheme is proposed to detect and to filter
out injected false data in WSNs. In I-LHAP, MACs are jointly gen-
erated by a group of nodes for a sensing target. A message is
attached with multiple MACs and each MAC is generated using
one group key. Because a node usually only knows one group
key, it is very difficult for one node to modify a message without
being detected. Based on a Linear Congruential Generator (LCG),
Sun et al. [2] propose a new block cipher that is suitable for con-
structing a lightweight secure protocol for resource-constrained
wireless sensor networks.

� Secure aggregation: Most existing secure aggregation schemes
employ cryptographic techniques. Przydatek et al. propose Secure
Information Aggregation (SIA) to defend against stealthy attack,
whose purpose is to make a user accept false aggregation results.
In SIA, aggregators need to prove and commit in order to illustrate
that answers provided by these aggregators are good approxima-
tions of true values. Chan et al. [13] further propose a secure hier-
archical in-network aggregation scheme, which can limit an
adversary’s ability to manipulate aggregation results. In this
way, an adversary can gain no additional influence over final
aggregation results through manipulation. The scheme of Yang
et al. [14] divides an aggregation tree into subtrees, each of which
reports aggregation results to a base station. The base station then
identifies suspicious reports and each suspected group needs to
prove the correctness of reported aggregates.
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� Secure localization: Different secure localization schemes have
also been explored. Liu et al. [15] propose two techniques to
survive malicious attacks against location discovery. The first
approach is derived from the ‘‘consistency” among received
beacon signals. Based on the observation that malicious loca-
tion references are usually inconsistent with benign ones, a
Minimum Mean Square Estimation (MMSE) based approach
is applied to examine the inconsistency among received loca-
tion references and to filter out malicious location references.
In the second approach, a deployment field is divided into a
grid of cells. Based on received location references, each node
may ‘‘vote” on the locations at which this node may
reside. After processing all of the received location refer-
ences, the cell with the highest number of votes is the esti-
mated location. In [16], Du et al. present a scheme by
letting sensor nodes verify whether derived locations are
consistent with deployment knowledge to identify location
anomalies.

3. Radio frequency identification system

Envisioned as a replacement for barcodes, billions of RFID
tags have been deployed on the market for various applications.
For example, pharmaceutical companies have embedded RFID
chips in drug containers to track the theft of highly controlled
drugs. Airline companies may use RFID tags to track and route
passenger bags.

An RFID system usually consists of RFID tags and RFID read-
ers. A tag is attached to a physical object and contains a digital
number associated with that object. Tags usually have very low
cost, limited storage, and extremely limited computing capabil-
ity. Tags may be powered by readers wirelessly (called passive
tags) or by a battery (called active tags). RFID readers are devices
that read/interrogate tags, and each reader is equipped with
antennas, a transceiver, and a processor. The reader broadcasts
a radio signal which contains an identifier in order to locate
the object. Based on different operating frequencies (for exam-
ple, 13.56 MHz or 915 MHz), RFID systems may have different
reading ranges (for example, 1 m or 3 m). Because many RFID
tags may be in the range of a reader at the same time, collisions
may happen. Collision-avoidance protocols are thus proposed to
resolve this collision.

Binary tree walking protocol [1] is one such protocol. Binary
tree walking protocol is a recursive depth-first search for the
reader to find all tag IDs. When the reader queries a node with
a binary string S of length d, all tags whose IDs have S as the pre-
fix response the next bit. Each tag in the left subtree of the node
sends 0, and each tag in the right subtree of the node sends 1. If
their next bits are different, a collision happens, and the reader
sequentially runs the algorithm on the node with the label Sk0
and the node with the label Sk1. If there is no collision and all
tags send the same bit a, the reader will sequentially run the
algorithm on the node with the label Ska, ignoring the other child
node. If the algorithm reaches a leaf, it outputs its N-bit ID. In this
way, IDs of all tags are output.

The pervasive nature of RFID systems make stored data
increasingly distributed among different parties. This raises
many new privacy and security for RFID systems. Because a
reader is little more than a radio transceiver, it is thus relatively
easy for attackers to obtain illegitimate readers and to query
RFID tags for sensitive information. For example, consumer prod-
ucts labeled with insecure tags may reveal private information
when queried by unauthorized readers. Many RFID protocols
have no explicit authentication procedures. This may result in
serious privacy concerns.

3.1. Security and privacy concerns for RFID

Because identifiers of RFID tags may be static and never
change, this facilitates tracking attacks – to enable an attacker
to track the movement of products. An adversary can also hotlist
important objects, based on which activities of targeted objects
can be profiled [3]. RFID systems also suffer from tag spoofing
and cloning, in which an adversary can physically access tags or
use an unauthorized reader to read tags in order for spoofing. This
allows an adversary to clone targeted tags.

3.2. Security and privacy solutions for RFID

Tags lack necessary computational, communication, storage,
and power resources to support strong cryptographic authentica-
tion schemes. These limitations make securing RFID systems a very
challenging task.

So far, efficient and low-cost authentication represents one of
the most important security efforts for RFID systems. Molnar
et al. [3] suggest a scheme to achieve mutual authentication be-
tween a tag and a reader. The scheme requires a shared secret s be-
tween a tag and a reader. The basic idea is to let both a reader and a
tag generate a random number r1 and r2, respectively. To begin
with, the reader sends r1 to the tag. The tag then sends
ðr2;r ¼ ID� fsð0; r1; r2ÞÞ to the reader, where fs is a keyed pseudo-
random function. This message enables the reader to authenticate
the tag. In order for the tag to authenticate the reader, the reader
needs to send a message r ¼ ID� fsð1; r1; r2Þ to the tag. In [22], Song
et al. propose a new authentication protocol for RFID that can resist
tag information leakage, tag location tracking, replay attacks, and
denial of service attacks.

To enhance security, Dimitriou [4], uses a secure one-way hash
function and random session identifiers. In this way, tag responses
may remain untraceable. After a reader sends a nounce NR to a tag,
the tag sends ðhðIDiÞ;NT ;hIDi

ðNT ;NRÞÞ, where NT is the nounce gen-
erated at the tag. After sing this message to authenticate the tag,
the reader can send hIDiþ1

ðNT ;NRÞ, based on which the tag can
authenticate the reader.

Observing that human beings and tags bear similarities such as
limited computing resources shared by both parties, Juels et al. [5]
propose a new and efficient authentication protocol HBþ, which is
improved based on human authentication protocol Hopper and
Blum (HB). In HBþ, a reader and a tag share two random secret x
and y. The tag also needs to generate a random factor b. Each time
a reader sends a query to a tag, the reader sends a new challenge
a 2 f0;1gk. Based on a; b; x, and y, the tag generates z and sends z
to the reader. The reader verifies z before accepting the tag as
legitimate.

4. Linear congruential generator based approach

Prevention-based approaches are still the most widely studied
approaches to provide security mechanisms for WSNs and RFID
systems. Resource-constrained nature of small devices presses a
need for lightweight primitives to provide security solutions. In
this section, based on a Linear Congruential Generator (LCG), we
propose a lightweight block cipher that can meet the security
and performance requirement of WSNs and RFID systems.

It is easy for us to think of linear algorithms when efficiency
and simplicity come to our top priorities. Motivated by the fact
that we can use the information itself to protect the random se-
quences, we can use the linear pseudo-random number genera-
tors (PRNGs) as an efficient mechanism to protect the data
transmission. Motivated by this, we pick up the LCG in its sim-
plest form to produce pseudo-random numbers. The reason we
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select the LCG is because it is the simplest, most efficient, and a
well-studied pseudo-random number generator.

Based on the Plumstead’s inference algorithm [2], we are moti-
vated to embed the generated pseudo-random numbers with mes-
sages in order to provide security. Specifically, the security of our
proposed cipher is achieved by adding random noise and random
permutations to original data messages.

4.1. LCG basics

The simplest form of an LCG uses the following equation:

Xnþ1 ¼ aXn þ bðmod mÞ; n ¼ 0;1;2; . . . ð1Þ

where a is the multiplier, b is the increment, and m is the modulus.
Xn and Xnþ1 are the n-th and ðnþ 1Þst numbers, respectively, in the
sequence generated by the LCG. X0 is called the seed of the LCG. X0,
a, b, and m are the parameters of the LCG. The statistical properties
of the pseudo-random numbers generated by an LCG depend on the
selection of its parameter.

Starting with this simplest LCG and motivated by the idea that
we can use the information itself to protect the random sequences,
we pick up the LCG in its simplest form to produce pseudo-random
numbers. In addition to Plumstead’s theoretical analysis, we imple-
ment the Plumstead’s algorithm to observe how many pseudo-ran-
dom numbers are actually needed to successfully recover the
parameters of an unknown LCG, so we can adequately adjust our
cipher to meet security requirements.

4.2. Plumstead’s algorithm

Assume Eq. (1) is a LCG with the fixed parameters a, b, m, and
X0, where m > maxða; b;X0Þ. The algorithm will find a congruence
Xnþ1 ¼ âXn þ b̂ mod m, possibly with a different multiplier and
increment but generating the same sequence as the fixed congru-
ence does. The inference consists of two stages as follows. Let
Yi ¼ Xiþ1 � Xi.

� Stage I: In this stage, we find â and b̂ as follows:
1. Find the least t such that d ¼ gcdðY0;Y1; . . . YtÞ and d divides

Ytþ1.
2. For each i with 0 6 i 6 t, find ui such that

Xt

i¼0

uiYi ¼ d:

3. Set â ¼ 1
d

Pt
i¼0uiYiþ1, and b̂ ¼ X1 � âX0. This stage will give

Xiþ1 ¼ âXi þ b̂ mod m for all i P 0.

� Stage II: In this stage, we begin predicting Xiþ1 and, if necessary,
modifying m. When a prediction Xi is made, the actual value will
be available to the inference algorithm. Initially, we set i ¼ 0 and
m ¼ 1 and assume X0 and X1 are available (we can reuse the
numbers used in the previous stage). Repeat the following steps:

1. Set i ¼ iþ 1 and predict

Xiþ1 ¼ âXi þ b̂ mod m:

2. If Xiþ1 is incorrect, m ¼ gcdðm; âYi�1 � YiÞ.Xi can be inferred in
the limit.

We carry out experiments to measure the impact of m on the
security performance of the LCG. We test the module, m, from 1
byte and double its size up to 32 bytes. For m P 2 bytes, we used
the Miller-Rabin Test, a very efficient randomized algorithm for
primality tests, to select and determine prime numbers with an er-
ror rate less than ð12 Þ

dlog2me. Given m, we select 1;000 sets of differ-
ent parameters (a, b, m, and X0). For each set of parameters, we

generate the sequence of pseudo-random numbers X1;X2; . . . ;Xn.
We run the Plumstead’s algorithm to decide how many Xi are
needed to recover the set of parameters (a, b, m, and X0).

The results of our experiments are shown in Table 1, in which l
is the average number of samples needed to successfully infer the
pseudo-random number sequence while d is the standard devia-
tion. The theoretical analysis of the Plumstead’s algorithm is based
on the worst case. In reality, however, the worst case rarely occurs.
Experimental results show that the Plumstead’s algorithm is much
more powerful than what the theoretical analysis has suggested.
We observe that the number of samples needed in average is far
fewer than that of the worst case. Also, Table 1 contains the best
case (min) and the worst case (max) for each size. The values of
d in Table 1 indicate that the worse case occurs rarely.

Based on the results illustrated in Table 1, we can see that the
size of m does not prolong the inference process significantly. This
is because, from the theoretical point of view, the size of m does
not affect the number of internal states. Therefore, for an LCG, in-
stead of increasing the size of m, we need to hide the numbers gen-
erated. Also, from the results illustrated in Table 1, we can see that
if we can find a way to prevent the adversary from retrieving five
or more consecutive numbers from the sequence, our cipher based
on the LCG will be secure.

4.3. Key selection

Based on the results illustrated in Table 1, the moduli we choose
is a 16-byte prime. This could also facilitate the selection of suit-
able X0, a, b, and m that satisfy the security requirements, as we
show later. By the Prime Number Theorem that the number of po-
sitive prime less than n is asymptotic to n= ln n, the density of 16
byte primes is about 1

ln 2128 ¼ 0:0127. Here, ln is the natural loga-
rithm whose base is e. Therefore, on average we can successfully
pick up a prime within about 100 random selections. Then, we ran-
domly assign numbers less than m to X0 without further imposing
any restriction except for some trivial values such as 0 or 2k. There
is no concern about the size of the cycle in the sequence generated,
since a 16-byte prime as the modulus is very likely to generate
unrepeated numbers within the length of a regular data message,
which is usually short in WSNs.

In our scheme, we only keep X0 as the secret shared between
two nodes. a, b, and m can be made open. They could be treated
as the WSN parameters. Careful selections of a, b, and m are
needed, though, in order to achieve the maximum security using
the LCG. In this respect, we apply Hull and Dobell’s Theorem [19]
as follows.

(a) Hull and Dobell’s Theorem: The linear congruential sequence
X0;X1;X2; . . . generated by

Xnþ1 ¼ aXn þ b mod m ð2Þ

has a period (the number of integers before the sequence repeats) of
length m if the following conditions hold:

(1) gcdðc;mÞ ¼ 1: The only positive integer that (exactly)
divides both m and c is 1. That is, c is relatively prime to m.

Table 1
Results of Plumstead’s algorithm

jmj Bytes l d Min Max

1 5.438 0.939 5 12
2 5.617 1.221 5 17
4 5.554 1.082 5 15
8 5.586 1.114 5 16
16 5.802 1.764 5 31
32 6.105 3.149 5 57
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(2) pjða� 1Þ, for every prime p such that pjm: If p is a prime
number that divides m, then p divides ða� 1Þ.

(3) If 4jm, then 4jða� 1Þ: If 4 divides m, then 4 divides ða� 1Þ.

Since the results of Plumstead’s algorithm suggest that the LCG
can be broken almost in a constant number of observed random
numbers, our system is not more secure if we keep all parameters
a; b;m; and X0 in secret. In this respect, we make them public ex-
cept X0. Our goal is to hide all random numbers from the adversary
and set up a system that chosen-plaintext attack cannot be con-
ducted. The security of our system then does not rely on the cryp-
tographic strength of the LCG (which is extremely weak). Instead,
we rely on the LCG’s statistical randomness, i.e., uniformality and
period of repetition. Besides the LCG, such statistical properties
of any PRNG can be easily tested. Based on Hull and Dobells Theo-
rem, the LCG can reach such maximal statistical randomness under
the conditions listed above, which are rather easy to achieve. When
the period of the LCG reaches its maximum value, the chance to
guess a right X0 is 1=m. Also, in practice, the chance that two nodes
have their sequence overlapped is slim when m is sufficiently large.
In our case, m has at least 128 bits.

Since X0 is the only shared secret, key pre-distribution is rela-
tively easier. For example, the Blom key predistribution scheme
[20] can be used to allow any pair of nodes to compute one secret
shared key (single key space) (It is worth noting that, based on the
Blom key predistribution scheme, Du et al. [21] proposed a pair-
wise key predistribution scheme using multiple key spaces). In this
paper, we focus on the discussion of a LCG-based scheme. X0 can be
any number in Zm ¼ 0;1; . . . ;m� 1. If the environment is detected
more hostile, our idea is still workable but a more complicate yet
more cryptographically secure PRNG should be used to replace
the LCG. Therefore, in this respect, the system is not more secure
if we keep a, b, and m the shared secret.

In order to speed up our modulus operation and reduce the
computing overhead for each sensor node, we make the following
requirement for the multiplier a and the modulus m:

263 < a < 264 and 2127 < m < 2128:

4.4. LCG based security protocols in WSNs

In this section, we briefly introduce our LCG based security pro-
tocols for WSNs.

Our proposed cipher to encrypt a 16 Byte packet is illustrated in
Fig. 2(a). In Fig. 2(a), we first use the LCG to generate a random
number X1 (Step 1) and embed the pseudo-random number X1 into
the plaintext message (Step 2). We then apply the permutation
function (Step 3). X1 will also serve as the source of the permuta-
tion function. The final ciphertext is obtained after Step 4.

a. Step 1 – Random Number Generation: We use the LCG to gen-
erate the random number. Given a 16 byte block cipher, one 16
byte random number, X1, is needed.
b. Step 2 – Stage I: Suppose p1 and p2 are the plaintext message
to be encrypted using this block cipher. Each pi is 8 bytes. We
embed the pseudo-random number X1 into the plaintext mes-
sage in the following way.For example, let Wirelesssensor (16
bytes) be the message to be encrypted. So p1 ¼Wireless, and
p2 ¼ sensor. The first three characters of p1 are W ¼ 87,
i ¼ 105, and r ¼ 114. The embedding operations are simply
the addition modulo 256. If

X1 ¼ 10 5A FB 11 FC BB 00 11 22 33 44 55 66 77 88 99h

The values of the first three bytes are 10h ¼ 16, 5Ah ¼ 90, and
FBh ¼ 251. Therefore, the values of the first three ciphertext
characters encrypted are:

87þ 16 mod 256 ¼ 103
105þ 90 mod 256 ¼ 195
114þ 251 mod 256 ¼ 109

As illustrated in Fig. 2(a), C1, and C2 are the scrambled text after
X1 is embedded. Each Ci is also 8 bytes.
c. Step 3 – Permutation: X1 is broken into 16 1 byte random
numbers, denoted as B0;B1; . . . ;B15, respectively. We introduce
a permutation function P over Z16 ¼ f0;1;2; . . . ;15g. Let
P ¼ p0p1p2 . . .p15 be constructed as follows:
I. p0 ¼ B0 mod 16;

II. pi ¼ ðn mod 16Þ, for i ¼ 1 . . . 15 with n is the smallest integer
such that n P Bi and pi 6 # fp0;p1; . . . ;pi�1g.

d. Step 4 – Stage II: After we obtain P, we apply P to C1C2

obtained in Step 2 in a standard manner, i.e., the i-th byte of
PðC1C2Þ is the pith byte of C1C2. Presented by 8 byte segments,
let PðC1C2Þ ¼ C01C02, which are our final encrypted message.

Decryption is straightforward. The receiver node could generate
the same X1 that the sender generates. Using X1, the receiver can
obtain p1 and p2 following the backward of Fig. 2(a).

Based on an LCG based block cipher, the overall hop-by-hop
security scheme is illustrated in Fig. 2(b). In Fig. 2(b), sensor nodes,
such as nodes A, B, C, and D have monitored some events and trans-
ferred the readings to their immediate aggregator, node H. Each
sensor node appends a MAC to the plaintext message P and uses
their shared secret keys with H to encrypt the whole message.
After H receives the readings, H uses the corresponding secret to
decrypt and to authenticate the received messages. This time, node
H appends a new MAC to the aggregated result and uses its shared
secrets with its immediate aggregator, node J, to encrypt the whole
message. The process continues until the result reaches the base
station.

4.5. LCG based security protocols for RFID

4.5.1. Keying mechanisms
For the read-only tags, a, b, m, and X0 can be stored, and these

numbers can be used to generate the random number for current
usage.

In the very basic scheme, a secret X1 is shared between the
reader and the tag. Different approaches can be used to do
this. For example, in the deployment of rewritable tags, X1

can be a pseudo-random number and do not need to go
through the LCG process. Also, X1 can be stored in the data-
base with the ID of the tag. For example, in a store, when
the item is checked out and no tag is needed, the secrets
can be erased from both the database and the tag. When a
new item arrives in the store or an item is returned, we can
let the powerful machines to generate random numbers, and
write it into tags.

4.5.2. Length selection and security analysis
Based on this consideration, we tailor Fig. 2(b) to a more general

and lightweight block cipher, as illustrated in Fig. 3. In Fig. 3, the
length of the input message and X1 is 2L Bytes. The permutation
function p0p1 . . .p2L�1 is obtained based on X1, i.e., each pi is deter-
mined by the first dlog2Le þ 1 bits of Bi and p0;p1; . . .pi�1.

4.5.2.1. Security analysis. The mapping from X1 to the permutation
is many-to-one. Under the chosen-plaintext attack, the adversary
may successfully obtain the permutation function if he is allowed
to choose and encrypt 2L plaintexts. However, the same permuta-

tion function may be constructed based on 2562L

ð2LÞ! many different

pseudo-random numbers X1. When L ¼ 4, for example, 2562L

ð2LÞ! � 249,
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which is not feasible to guess the correct X1. Using Stirling’s
approximation for ð2LÞ!, one can see that increasing L with

L < 128 will also increase 2562L

ð2LÞ! . Thus, a larger L within the reason-

able range for applications will lead to better security. Neverthe-

less, this will also increase computational overhead. L can be
treated as a security parameter to the system.

When L ¼ 4, we use the first three bits ð8 ¼ 23Þ in Bi to construct
the permutation function. The probability that the values in Bi do
not introduce collisions, according to Birthday attack, when n ¼ 8
and k �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n ln 0:5�1

p
� 1 � 2:62. The probability of Bk mod 2L 2

fp0; p1; . . . ; pk�1g (the probability of collision) is at least 0:5.
Therefore, starting from p2, the value of pi is not likely to be the va-
lue of Bi mod 2L. As i becomes larger, the chance of collisions be-
comes larger and the chance that the attacker obtains the right
value for Bi becomes smaller.

4.5.2.2. Discussion. Our cipher is designed based on the following
belief: While the pseudo-random numbers are generated to pro-
tect the message, the entropy of the message itself can in turn pro-
tect the pseudo-random numbers. Thus, if the message sent out
from the tags is almost flat, i.e., with very low entropy, our encryp-
tion in Step 2 alone is insecure since too many random bits can be
recovered and, consequently, the size of the possible key space will
be largely reduced. For this reason, we introduce the permutation
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Fig. 3. LCG based block cipher for RFID.
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Fig. 2. LCG based hop-by-hop security protocol for WSNs. (a) Message encryption of a 16 byte packet. (b) Hop-by-hop security protocol.
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in our cipher in Steps 3 and 4 to guarantee that even if our cipher is
applied to a low entropy environment, the security of our cipher
will not be significantly compromised.

Moreover, the encryption in Step 2 alone cannot resist known-
plaintext attack in case the message in a sequence of transmitted
packets is known to the adversary. To fix this problem, the permu-
tation function takes on in Step 3, in which the random numbers
generated by the LCG play an extra role in altering the original or-
der of the content of the message.

So far, we are not aware of any known-plaintext attack against
our proposed block cipher. Even a plaintext–ciphertext pair is gi-
ven, there is no easy way to separate the two factors, noise and
permutations, involved in the ciphertext. Likewise, a direct cipher-
text analysis does not seem possible.

We can see that with the increase of L, the security of the pro-
posed block cipher is increased. Therefore, for an RFID system, we
can tune L to provide a good trade-off between security and perfor-
mance. Moreover, except the length of plaintext messages, the
block cipher illustrated in Fig. 2(b) is the same as that illustrated

in Fig. 3. This can facilitate security integration of WSNs and RFID
systems.

4.5.3. Mutual authentication
A very basic mutual authentication protocol in RFID is pre-

sented in Fig. 4(b). In Fig. 4(b), a reader and a tag share secret a,
b, X0, and m. To read from the tag, the reader generates a random
number r1 and starts a timer T1. r1, with a length of 2L Bytes, is sent
to the tag. The purpose of T1 is to prevent potential intruders from
decrypting X1 given adequate time. After the tag receives the chal-
lenge r1, it uses the LCG based encryption scheme to encrypt r1, de-
noted as LCGX1 ðr1Þ. To provide its identification, the tag sends
(IDXOR LCGX1 ðr1Þ) to the reader.

To authenticate the reader, along with the encrypted r1, a new
challenge r2 is needed to be sent from the tag to the reader. In
our case, to reduce the overhead on the tag side, we use X1 as
the challenge, instead of r2. Therefore, after the reader receives
the message from the tag, a new message in the format of (IDXOR
LCGX2 ðX1Þ) is sent from the reader to the tag.

Reader Tag

Hello, r1

Generate r1

Reader and Tag share secret a, b, m, X0

ID XOR LCGX1(r1) 

1. Compute ID XOR LCGx1(r1)
and compare its value with the 
received ID XOR LCGx1(r1)
2. Compute X2 ID XOR LCGX2(X1) 

Compute ID XOR 
LCGx2(X1)a nd compare 
its value with the 
received ID XOR 
LCGx2(X1)

Start Timer T1

Stop Timer T1

Generate X1

Reader Tag

Hello, r1

Generate r1

Reader and Tag share secret a, b, m, X0

ID XOR LCGX1(r1) 

1. Compute ID XOR 
LCGx1(r1)a nd compare its 
value with the received 
LCGx1(r1)
2. Compute X2

S XOR LCGX2(X1) 
Compute S XOR LCGx2(X1)
and compare its value with 
the received S XOR 
LCGx2(X1)

Generate X1

Generate X2, X3
ID XOR LCGX3(X2) 

Reader and Tag successfully 
authenticate each other

a

b

Fig. 4. LCG based hop-by-hop security protocol for RFID Systems. (a) Mutual authentication between a reader and a tag. (b) Mutual Authentication between a reader and a tag
for binary tree walking scheme.
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4.5.4. Collision avoidance ID authentication
In practice, there may exist collisions when a reader wants to

find a specific tag [1]. A binary tree walking scheme can be used
to resolve the collisions. In this case, there may exist multiple
rounds of communications between a reader and tags.

Let n denote the number of tags (leaves) in a binary tree. A node
of depth d is labeled with a binary string S of length d, and has two
children with depth dþ 1: the left child is labeled Sjj0 and the right
child is labeled Sjj1. The binary tree walking algorithm is a recur-
sive depth-first search for the reader to find all IDs of tags [1]. In
this case, each tag (edge in the binary tree) is associated with a se-
cret and this secret is shared with the reader. We have the protocol
illustrated in Fig. 4. In Fig. 4, we omit the timer to make the figure
better illustrated.

Similar to Fig. 4(b), a reader initiates to poll tags by generating
a random number r1. When the reader queries a node with binary
string S, all tags whose IDs have S as the prefix respond to the
next bit. Each tag in the left subtree of the node sends 0, and each
tag in the right subtree of the node sends 1. The reply from each
tag can be used by the reader to authenticate the tag. Also, the
reader queries the tag with the binary string S. This message
can be used by the tag to authenticate the reader. The mutual
authentication can go to the next level after it succeeds at the
current level. If the reader passes all secrets in the path, the read-
er is authenticated. Note that on the tag’s side, only a sequence of
X1;X2; . . . ;Xn are needed. These Xs, in turn, can be used by the tag
to authenticate the reader.

4.5.5. Performance analysis
The overhead is determined by the Number of Basic Operations

our block cipher and protocol incur. We consider Addition, XOR,
Shift (1 bit), Fetch (fetch a value from the main memory to a reg-
ister), and Store (store a value in a register to the main memory)
as our basic operations. To make our comparison plausible, we
consider the cost of performing one general n-bits multiplication
as n

2 additions and n
2 shifts in average on n-bit registers. Since a divi-

sion can be reduced to a multiplication, we use the same estima-
tion for the division. Also, the same estimation is made to the
general modulo.

We have some special cases: a multiplication by two is a left-
shift operation; the operation of ðn mod 32Þ is considered one
XOR operation (in fact, we need a bitwise AND). We consider that
n basic operations on a 32-bit-processor are equivalent to 8n basic
operations on a 8-bit processor. This is because each operation will
be broken into 4 operations plus 4 store operations. This may be
oversimplified since some necessary bookkeeping such as handling
the carry bits may be required, but we ignore them for simplicity.

In Table 2, the first column is the name of the basic operations.
The second, third, and fourth columns list the number of basic
operations needed for a 2L bytes block, where L is 4, 8, and 16 on
a 8-bit processor, respectively. Here Op. is the abbreviation for
Operation. Please note that the number of operations presented
in Fig. 2 does not include the operations to generate random
numbers.

Table 3 briefly analyzes the number of basic operations to gen-
erate a pseudo-random number. Here we use L ¼ 8. In Table 3, the
first column illustrates the basic LCG operations involved in the
random number generation. The second column illustrates the
number of corresponding LCG operations. The third column lists
equivalent operations on an 8-bit processor. The fourth column
lists the corresponding number of the basic operations for a 16
byte block on an 8-bit processor.

5. Conclusions

In this article, we first briefly introduce WSNs and RFID systems.
We then present their privacy and security concerns and related
solutions. We finally propose a Linear Congruential Generator
(LCG) based lightweight block cipher that can meet security co-
existence requirements of WSNs and RFID systems.
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