
On Type-2 Complexity Classes

Preliminary Report

Chung-Chih Li∗ James S. Royer∗

15 March 2001

Abstract

There are now a number of things called “higher-type complexity
classes.” The most promenade of these is the class of basic feasible
functionals [CU93, CK90], a fairly conservative higher-type analogue the
(type-1) polynomial-time computable functions. There is however cur-
rently no satisfactory general notion of what a higher-type complexity
class should be. In this paper we propose one such notion for type-2
functionals and begin an investigation of its properties. The most strik-
ing difference between our type-2 complexity classes and their type-1
counterparts is that, because of topological constrains, the type-2 classes
have a much more ridged structure. Example: It follows from McCreight
and Meyer’s Union Theorem [MM69] that the (type-1) polynomial-time
computable functions form a complexity class (in the strict sense of Def-
inition 1 below). The analogous result fails for the class of type-2 basic
feasible functionals.

§1. Introduction

Constable [Con73] was one of the first to study the computational complexity
of higher-type functionals. In that 1973 paper, he raised two good questions:

1. What is the type-2 analogue of the polynomial-time computable func-
tions?

2. What is the computational complexity theory of the type-2 effectively
continuous functionals?

In the years since there has been a fair amount of attention given to addressing
the first question, but hardly any to the second. We think that after nearly
three decades the man deserves an answer. Herein we make a start at providing
one.

∗Dept. of Elec. Eng. & Computer Science; Syracuse University; Syracuse, NY 13244 USA.

Research supported in part by NSF grant CCR-9522987.

1

123

Type-2 Complexity Classes 2

Professor Constable will have to wait a bit longer for a full answer to
his question because what he seems to have had in mind in 1973 and what
we study below are different in a couple of respects. First, Constable was
interested in effectively continuous functionals [Odi89] of the general type
(N ⇀ N)m × Nn ⇀ N.1 We instead focus on partial recursive functionals
[Odi89] of type (N → N) × N ⇀ N — a much more tractable setting. Sec-
ond, Constable wanted an extension of Blum’s complexity measure axioms
[Blu67, Odi99] to type-2 and included an interesting proposal along those
lines. At present type-2 computational complexity is at so poorly understood
that we believe that concrete, worked-out examples are what is needed. So
instead of trying to develop an axiomatic treatment, we follow an approach
similar to that of Hartmanis and Stearns [HS65] in studying the complex-
ity properties of a simple, standard model of computation. In our case, the
model is the deterministic, multi-tape, oracle Turing machine with Kapron
and Cook’s answer-length cost convention (more on this shortly).

Outline. The next section sketches a few facts about type-1 complexity
theory and explains our focus on complexity classes. Section 3 introduces our
model of type-2 computation and some associated notions. Section 4 considers
the nature of type-2 time bounds and Section 5 concerns what it means for
a type-2 time bound to hold almost everywhere. Section 6 introduces our
definition of a type-2 complexity class and presents few elementary results
about these classes. Unions of complexity classes and whether these unions
are themselves complexity classes are considered in Section 7. Section 8 studies
the problem of whether there is a uniformly way to expand a given complexity
class to a strictly larger class. Finally, Section 9 contains our conclusions and
suggestions for future work.

§2. A glance at type-1 computational complexity

Our study of type-2 computational complexity proceeds by rough analogy with
the type-1 theory. Thus before considering the situation at type-2, we start
by recalling a few basic facts about the type-1 theory.

Our model of computation. Following hoary complexity-theoretic tradition,
we take deterministic, multi-tape Turing machines (TMs) as our default model
of type-1 computation. Each step of a TM has unit cost. To simplify matters
a bit, we also follow the common convention of requiring that each TM must
read its entire input string. This forces a TM to have distinct computations
on distinct inputs. (We will return to this point later.)

Strings and numbers. Each x ∈ N is identified with its dyadic representa-
tion over {0,1 }. Thus, 0 ≡ ε, 1 ≡ 0, 2 ≡ 1, 3 ≡ 00, etc. For each x ∈ N,

1Notation: N denotes the set of natural numbers and A ⇀ B (respectively, A → B)

denotes the collection of all partial (respectively, total) set-theoretic functions from A to B.

15 March 2001

124

Type-2 Complexity Classes 3

|x| denotes the length of its dyadic representation. We will freely pun between
x ∈ N as a number and a 0-1-string. TMs are thought of computing partial
functions over N (∼= {0,1 }∗).

The standard indexing and complexity measure. PR and R respectively
denote the partial recursive and total recursive functions over N. Let 〈ϕi〉i∈N

be an acceptable indexing [Rog67] of PR based on TMs. We call i a ϕ-program
for ϕi. For each i and x, let Φi(x) denote the run time of the TM encoded by
i on input x. Note that 〈Φi〉i∈N satisfies Blum’s complexity measure axioms:
(i) { (i, x) ϕi(x)↓ } = { (i, x) Φi(x)↓ } and (ii) { (i, x, n) Φi(x) ≤ n } is
decidable. Also note that it follows from our requirement that a TM must
read all of its input that |x|+ 1 ≤ Φi(x) for each i and x.

Ordering on functions and almost everywhere relations. For f, g : A→ B,
f ≤ g means that for all x ∈ A, f(x) ≤ g(x); f < g, and so on, are defined
analogously. For f, g : N → N, f =∗ g means that {x f(x) = g(x) } is
co-finite; f <∗ g, and so on, are defined analogously.

Definition 1 (Type-1 complexity classes). For each t ∈ R:

C(t) =def {ϕi ∈ R i ∈ N & Φi ≤∗ t }. (1)

We call C(t) the complexity class named by t. 3

Equation (1) is the standard definition of a complexity class relative to an
arbitrary complexity measure Φ. By using special properties of our particular
choice of Φ, we could replace the ≤∗ in (1) with ≤ and definite essentially
the same notion. However, we retain the ≤∗ as a pedagogical reminder that
membership in a complexity class depends on the asymptotic behavior of wit-
nessing programs. For example, under many models of type-1 computation
one can effectively patch programs so that on some specified finite set of ar-
guments, the complexity is essentially anything you choose and off that finite
set of arguments, the complexity is unchanged from the original. Thus, the
“inherent complexity” of a program is only revealed in its asymptotic behav-
ior.2 One consequence of (1) is that to establish f /∈ C(t) for given f and t,
one must prove that any program for f must have complexity that is infinitely
often greater than t. Here is a sample argument along these lines.

Theorem 2 (Rabin [Rab60]). Suppose t ∈ R. Then there is an 0–1-valued

element f ∈ R such that f /∈ C(t).

Proof Sketch. The proof uses a standard cancellation constructions. In the
program for f given in Figure 1, Cw = programs cancelled on inputs < w and

2Another reason stems from recursive relatedness [Blu67, Odi99]; when you abstract away

from a particular model of computation, the almost everywhere bounds are a necessary part

of most theorems in the general theory.

15 March 2001

125

Type-2 Complexity Classes 4

Input x.

C0 ← ∅.
For w ← 0 to x do:

Sw ← { k ≤ w k /∈ Cw & Φk(w) ≤ t(w) }.
If Sw 6= ∅ then Cw+1 ← Cw ∪ {min(Sw) } else Cw+1 ← Cw.

If Sx = ∅ then return 0 else return 1 .− ϕe(x), where e = min(Sx).

Figure 1: The program for f

Sw = the candidates for cancellation on input w. A program i is cancelled
on input w if and only if i ∈ Cw+1 − Cw, in which case the construction will
guarantee that Φi(w) ≤ t(w), f(w) 6= ϕi(w), and i will never be cancelled
again.

It is clear from the program that cancellation works as advertised and f is
a 0-1 element of R. It remains to show f /∈ C(t). Suppose that i is such that
Φi ≤∗ t. Choose w0 ≥ i so that (a) Φi(w0) ≤ t(w0) and (b) for each k < i that
is ever cancelled, k has been cancelled before input w0. Hence, either i has
been cancelled on a w < w0 or the construction must cancel i on input w0. In
either case ϕi 6= f . Therefore, f /∈ C(t).

Honesty. Note that Definition 1 says nothing about the complexity of
computing t itself. This is an important issue that is usually dealt with through
the notions of honesty and time constructibility.

Definition 3. Suppose f, g : N→ N.
(a) We say that f is g-honest if and only if for some i, a ϕ-program for f ,

Φi ≤ g ◦ f .
(b) We say that f is honest if and only if f is g-honest for some g ∈ R.
(c) We say that f is time constructible if and only if f = Φi for some i

with ϕi ∈ R. 3

Intuitively, f is honest provided there is a way of computing f such that the
size of each output is roughly commensurate with the time it takes to produce
that output. The construction for Rabin’s Theorem produces highly dishonest
functions. On the other hand, a time constructible function is as honest as it is
possible to be. Roughly, honest functions provide good names for complexity
classes, whereas complexity classes named by dishonest functions can be quite
pathological (see Theorems 23 and 24 below). In this paper we will not deal
directly with type-2 analogues of honesty and time constructibility. However,
they will be important background concerns, and we will see that there is some
amount of honesty built into our notion of type-2 time bound.

15 March 2001

126

Type-2 Complexity Classes 5

Why are complexity classes of interest? One of the central obsessions of
computation complexity theory is the attempt to draw sharp boundaries be-
tween the computationally feasible and infeasible, where the notions of feasible
and infeasible vary with context. Given an arbitrary t ∈ R, C(t) is unlikely to
represent anyone’s notion of feasibility. However, C(t) is a very simple and el-
egant way of representing a complexity-theoretic boundary. Thus, if you want
to understand computational complexity, one of the first things you want to
study is the nature of these boundaries.

This is enough about the type-1 theory for the moment. Our goal in the
next few sections is to introduce a sensible type-2 analogue of Definition 1.

§3. Type-2 computations and their costs

For our default model of type-2 computation we take deterministic, multi-tape
oracle Turing machines (OTMs). Under our setup OTMs are TMs that are
augmented with two special tapes: a query tape and a reply tape, and one
special instruction: query. To make a query of an oracle f : N→ N, an OTM
writes a 0-1 string (interpreted as the dyadic representation of an x ∈ N) on
the query tape and goes into its query state, whereupon the contents of the
query tape are erased and the contents of the reply tape become the dyadic
representation of f(x). We also require that each OTM must read all of its
type-0 input before halting, and additionally, that immediately after making
the query, an OTM must read all of the answer to said query. Each step of an
OTM has unit cost, but our requirement that OTMs read all of each oracle
response makes our cost model equivalent to Kapron and Cook’s answer-length
cost model [KC96].

Why OTMs? No one outside of complexity theory cares much for TMs or
OTMs as models of computation. So our use of OTMs is a poor marketing
choice. In their favor, OTMs are a simple, conservative model of computation
with a simple, conservation notion of cost. Hence, reasoning about their com-
plexity is straightforward (or as straightforward as reasoning about complexity
can ever be) and this just what we want from our model of computation in our
initial foray into this territory. Extending our results to other basic models of
computation should not be that hard, but we need to know the general shape
of the results first.

The unit cost model for OTMs. If we drop the requirement that each OTM
must read the entire answer to each query, then we obtain the unit cost model
for OTMs. Working with this model is more difficult than the answer-length
cost model and the results tend to be weaker. This unit cost model is studied
in [Li01], but we shall not discuss it further in this paper.

Finite functions. Let F denote the collection of finite functions over N, i.e.,
each σ : N ⇀ N is defined on only finitely many arguments. In the following σ

15 March 2001

127

Type-2 Complexity Classes 6

and τ (with or without decorations) range over F . We identify each σ with its
graph: { (x, σ(x)) σ(x)↓ }. We shall assume some canonical representation of
the elements of F and typically treat them as type-0 arguments to functions.
For each σ, define σ : N→ N by:

σ(x) =

{
σ(x), if σ(x)↓;
0, otherwise.

The standard indexing and complexity measure. The class of functionals
computed the OTMs sketched above are called the partial recursive functionals
(of type (N → N) × N ⇀ N) in Odifreddi [Odi89]. We denote this class by
PRF and the total members of this class byRF . Let 〈ϕi〉i∈N be an acceptable
indexing of PRF based on OTMs. We call i a ϕ-program for ϕi. For each i,
f , and x, let Φi(f, x) denote the run time of the OTM encoded by i on input
(f, x). Note that it follows from our requirement that an OTM must read all
of its input that |x|+1 ≤ Φi(f, x) for each i, f , and x. For each i, f , x, and n,
define Qi(f, x, n) = the set of queries issued in the first min(n,Φi(f, x)) steps
of the computation of ϕ-program i on input (f, x), Qi(f, x) = ∪nQi(f, x, n),
Usei(f, x, n) = { (x, f(x)) : x ∈ Qi(f, x, n) }, and Usei(f, x) = ∪nUsei(f, x, n).
Also, for each i, σ, and x, we define

Φi(σ, x) =




Φi(σ, x), if Qi(σ, x) ⊆ { y σ(y)↓ };
n, otherwise, where n is the number of steps

taken up to the issuance of the first query
“σ(y) =?” where σ(y)↑.

§4. Type-2 time bounds

Our current goal is to lift Definition 1 to type-level 2 in a reasonable way.
The key issue in this is what should be the type-2 translation of the inequality
Φi ≤∗ t of (1). In place of Φi we clearly should use Φi, but there are two
harder questions:

1. What should stand in place of ≤∗?

2. What should stand in place of t?

We examine the first question in the next section. Here we shall consider how
to sensibly express time bounds on type-2 computations.

What we don’t do, and why. One way to proceed is to use arbitrary el-
ements of RF as time bounds. That is, given T ∈ RF , we could say that
ϕ-program i has complexity everywhere bounded by T if and only if Φi ≤ T

(i.e., for all f and x, Φi(f, x) ≤ T (f, x)). Something of this sort is briefly
considered by Kapron [Kap91] and Seth [Set94]. This sort of bound has the
following troublesome feature.

15 March 2001

128

Type-2 Complexity Classes 7

Proposition 4. Suppose that Φi ≤ T and that b is some ϕ-program b for T .

Then, for all f and x, Qi(f, x) ⊆ Qb(f, x).

Proof. Suppose by way of contradiction that y ∈ (Qi(f, x) − Qb(f, x)) for
some particular f and x. Let f ′ be such that f ′(z) = f(z) for z 6= y and
f ′(y) = 21+T (f,x). Then T (f ′, x) = T (f, x) since ϕ-program b fails to query
f on y. Moreover, Φi(f ′, x) > T (f, x) since ϕ-program i on input (f ′, x) will
query f ′ on y and the cost of this query is greater than T (f, x). Therefore,
Φi(f ′, x) > T (f, x) = T (f ′, x), a contradiction.

Thus, for Φi ≤ T to hold it must be the case that for any ϕ-program b for
T and any input (f, x), the ϕ-program b must anticipate all of the possible
questions the computation of i on (f, x) might ask and ask them itself. This
seems like an odd thing for a humble bound to do. In particular, if T is honest
and small (in some reasonable senses), then {ϕi ∈ RF i ∈ N & Φi ≤ T }
must be very restricted since the set of queries a ϕi in this collection will be
quite circumscribed.

Our approach. To avoid having our bounding functionals issue queries, we
make them a particular sort of enumeration operator [Rog67, Odi89]. That
is, the bounding functionals can be thought of as passive observers of the
computations they are set to bound; at any point of the computation, the
bounding functional will have “bounding value” based on what the functional
has seen of the input and the queries. This scheme is directly inspired by
the standard clocking scheme for second-order polynomially bounded OTMs
[KC96, Set92]. We proceed formally as follows.

Definition 5. Suppose β : F ×N→ N is total computable.
(a) We say that β determines a weak type-2 time bound if and only if it

satisfies the following three conditions, for all f , σ, and x,
Nontriviality: β(σ, x) ≥ |x|+ 1.
Convergence: limτ→f β(τ, x)↓ <∞.
Boundedness: supτ⊂f β(τ, x) = limτ→f β(τ, x).

Let WB be the collection of all such β’s.

(b) We say that β determines a strong type-2 time bound if and only if
β satisfies the nontriviality and convergence conditions as above as well as
satisfying, for all σ, σ′, and x:

Monotonicity: σ ⊆ σ′ implies β(σ, x) ≤ β(σ′, x).
Let SB be the collection of all such β’s. 3

Clearly, if SB ⊂ WB. Unless we say otherwise, β will denote an element
of WB in the following.

15 March 2001

129

Type-2 Complexity Classes 8

Definition 6.

(a) We say that the run time of ϕ-program i on input (f, x) is bounded by
β (written ϕi,β(f, x)⇓) if and only if, for each n, Φ(i, σn, x) ≤ β(σn, x), where
σn = Usei(f, x, n).

(b) We say that the computation of ϕ-program i on input (f, x) is clipped
by β (written ϕi,β(f, x)⇑) if and only if not ϕi,β(f, x)⇓.

(c) Define Ei,β = { (f, x) ϕi,β(f, x)⇑ }; we call Ei,β the exception set for
i and β.

(d) We say that the run time of ϕ-program i is everywhere bounded by β

if and only if Ei,β is empty. 3

Example 7.

(a) Suppose ϕi ∈ RF and, for each σ and x, let β(σ, x) = Φi(σ, x). Then
β ∈ SB and it is no surprise that the run time of ϕ-program i is everywhere
bounded by β.

(b) For each a, k, d, x, and σ, define βa,k,0(σ, x) = a · (|x| + 1)k and
also βa,k,d+1(σ, x) = a · (|w| + |x| + 1)k, where w = max({σ(y) |y| ≤
βa,k,d(σ, x) & σ(y)↓ }). Then each βa,k,d ∈ SB and the class of BFFs of
type (N→ N)×N→ N is exactly

⋃
a,k,d {ϕi the run time of ϕ-program i is

everywhere bounded by βa,k,d } [Set92, IKR01]. 3

§5. Type-2 almost everywhere bounds

We want to speak of the run time of ϕ-program i being almost everywhere
bounded by β. Intuitively, this should mean that in some appropriate sense
Ei,β is finite. In the realm of function spaces, “finite” usually corresponds
to compact in some topology. So the question of almost everywhere bounds
comes down to a choice of topology.

What we don’t do, and why. Our OTMs compute over (N→ N)×N. That
space is isomorphic to NN which has a well-known topology due to Baire. Let
B denote this topology on (N → N) × N. For B, it suffices to take { ((σ, x))
σ ∈ F , x ∈ N } as the collection of basic open sets, where for each σ and x,

((σ, x)) =def { (f, x) f ⊃ σ }.
The problem with B is that the compact sets are all too small for our purposes.
This is shown by:

Proposition 8. If an Ei,β is B-compact, then this Ei,β is empty.

Proof. It follows from Definitions 5(a) and 6(c) that Ei,β is open in B. But
the only open compact set in this topology is ∅.

Roughly, the more open sets one has in a topology, the more restricted
are its compact sets. B and “large” topologies in general thus fail to provide

15 March 2001

130

Type-2 Complexity Classes 9

sufficiently large compact sets so as to obtain nontrivial almost everywhere
relations.

Our approach. To address the problem of what topology to use, we shift
our attention from the set of possible inputs of an OTM to the set of possible
computations of an OTM. To motivate this shift, let us first consider a par-
ticular ordinary TM M that ignores the convention about reading its entire
input. This M acts as follows:

Upon staring, M examines the first symbol on the input tape. If
this is a 0, M immediately halts with output 0; otherwise, M reads
the rest of the input and then halts with output 1.

Clearly there are infinitely many inputs on which M halts with output 0.
However, there is only one computation of M that produces output 0: on
an input of the form 0{0,1 }∗ the machine never looks beyond the initial 0,
hence all such inputs produce the same computation. Therefore if we want to
say that such an M does something for all but finitely many cases, we must
specify whether cases in question are inputs or computations — each choice
has its own faults and merits.

Now, any halting computation of an OTM has 2ℵ0 -many inputs which pro-
duce that computation. So if we want to say that OTM does something for
all but finitely many cases, we again must choose between these cases corre-
sponding to inputs or computations. B roughly corresponds to the “inputs”
choice. No single topology corresponds to the “computations” choice, but we
need not be restricted to a single topology. The next two definitions introduce
several topologies we need to consider.

Definition 9. Suppose F : (N→ N)×N ⇀ N is B-continuous.
(a) A locking segment for F is a (σ, x) for which there is a y ∈ N such that

for all f with (f, x) ∈ ((σ, x)), F (f, x) = y.
(b) A minimal locking segment for F is a locking segment (σ, x) for F such

that for each τ ⊂ σ, (τ, x) fails to be a locking segment.
(c) The induced topology for F (denoted I(F)) is the topology determined

by the subbasis: { ((σ, x)) (σ, x) is a minimal locking segment for F }. 3

Definition 10. The induced topology for the ϕ-program i (denoted Ii) is
the topology determined by the subbasis: { ((Usei(f, x), x)) f : (N → N) →
N, x ∈ N }. 3

It is easily seen, for each i with ϕi ∈ RF , that I(ϕi) is a subtopology of Ii
which in turn is a subtopology of B and that I(ϕi) is the smallest subtopology
of B such that ϕi is continuous.

15 March 2001

131

Type-2 Complexity Classes 10

Now we have a decision to make. We can take “the run time of ϕ-program i

is almost everywhere bounded by β” as meaning either (a) Ei,β is Ii-compact or
(b) Ei,β is I(ϕi)-compact. Choice (a) exactly matches our talk about counting
computations. But working with choice (a) turns out to be tricky. Part of
the problem is that under choice (a) it is very hard to compare computations
of programs for the same functional — ϕi = ϕj does not imply that Ii and
Ij have much to do with one another. So for reason simplicity, in this paper
we make choice (b). There are prices to be paid for this choice, but they are
generally tolerable. Thus we officially introduce:

Definition 11. We say that the run time of ϕ-program i is almost everywhere
bounded by β if and only if Ei,β is I(ϕi)-compact. 3

Note: Since I(ϕi) is a subtopology of Ii, any Ii-compact set is also I(ϕi)-
compact. We shall use this frequently in the following.

As a first check that Definition 11 is reasonable, we note:

Proposition 12. Suppose i is such that ϕi ∈ RF and c ∈ N. Then { (f, x)
Φi(f, x) ≤ c } is I(ϕi)-compact.

Proof. Suppose that Φi(f, x) ≤ c. It follows from our restrictions on OTMs
that |x|, |max(Qi(f, x))|, and |max{Usei(f, x)(y) y ∈ Qi(f, x) }| are all no
greater than c. Clearly then, there are only finitely-many computations of ϕ-
program i with Φi(f, x) ≤ c. Therefore, { (f, x) Φi(f, x) ≤ c } is Ii-compact,
and hence, I(ϕi)-compact.

§6. Type-2 complexity classes

Now that all the pieces are in place, we can state:

Definition 13. For each β ∈WB:

C(β) =def {ϕi ∈ RF i ∈ N & Ei,β is I(ϕi)-compact } . (2)

We call C(β) the complexity class named by β. 3

This notion of complexity class is similar its type-1 cousin in many ways.
Here is a first illustration.

Proposition 14. Suppose F ∈ C(β). Then there is a ϕ-program i for F and

a c ∈ N such that Ei,c·β = ∅.

15 March 2001

132

Type-2 Complexity Classes 11

Proof Sketch. Let p be such that ϕp = F and Ep,β is I(F)-compact. Let
M be the OTM coded by p and let C be a finite I(F)-cover of Ep,β. If C = ∅,
then we are done. Suppose C 6= ∅ and let {x0, . . . , xk } = {x ((σ, x)) ∈ C }.
One can argue that, for each i ≤ k, there is a finite decision tree Ti as follows.

Each node n of Ti is labeled a yn ∈ N. If n is an interior node, this will
correspond to the oracle query “f(yn) =?”. If n is a terminal node, this will
correspond to the output being yn. Each edge leaving an interior node is
labeled a z ∈ N; this corresponds to z being the answer to the interior node’s
query. For each node n of Ti, let σn be the finite function that corresponds to
the set of queries and answers on the path leading to n. We require that (i) if n

is a terminal node, then (σn, xi) a locking segment for ϕp and ϕi(σn, xi) = yn;
(ii) if n is an interior node, then for all f ⊃ σn, M on (f, xi) queries f on yn,
and (iii) { ((σn, xi)) n is a terminal node of Ti and i ≤ k } covers Ep,β.

Given these Ti’s, let M′ be the OTM that, on input (f, x), checks if x = xi

for some i ≤ k. If not, then M′ acts like M. If so, then M′ follows the decision
tree Ti until either (i) it reaches an terminal node n, in which case is outputs
yn and halts or else (ii) M′ reaches an interior node n, and f(yn) is not the
label of any edge leaving n, in which case, M′ acts like M on input (f, x).

Clearly, M′ computes ϕp. The extra cost of running M′ on (f, x) over
running M is the cost of following the decision tree Ti when x = xi for some
i ≤ k. Since in following the decision tree Ti simply involves making queries
that M on input (f, x) will have to make anyhow. Hence, with a little careful
programming, there is a c ∈ N such that c ·β everywhere bounds the run time
of M′.

Note: In general it is false that if Ei,β is I(ϕi)-compact, then there is a c

such that Ei,β+c = ∅ — this is part of the price of using the I(ϕi) topology.
As a second illustration of the similarity between type-1 and type-2 com-

plexity classes, we show that a straightforward lift of the proof of Rabin’s
Theorem (Theorem 2) suffices to obtain a type-2 version of that result.

Theorem 15. Suppose β ∈ WB. Then there is an 0–1-valued element F ∈
RF such that F /∈ C(β).

Proof Sketch. The argument is a direct lift of the one given for Theorem 2
above. In the program for F given in Figure 2, Cf,w = programs cancelled
on inputs (f,w′) with w′ < w and Sf,w = the candidates for cancellation
on input (f,w). A program i is cancelled on input (f,w) if and only if i ∈
Cf,w+1−Cf,w, in which case the construction will guarantee that ϕi,β(f,w)⇓,
F (f,w) 6= ϕi(f,w), and i will never be cancelled again on an input of the form
(f, x) with x > w.

It is clear from the program that cancellation works as advertised and F

is a 0-1 element of RF . To show F /∈ C(β) consider an i such that Ei,β is

15 March 2001

133

Type-2 Complexity Classes 12

Input (f, x).

Cf,0 ← ∅.
For w ← 0 to x do:

Sf,w ← { k ≤ w k /∈ Cf,w & ϕk,β(f,w)⇓ }.
If Sf,w 6= ∅ then Cf,w+1 ← Cf,w ∪ {min(Sf,w) } else Cf.w+1 ← Cf,w.

If Sf,x = ∅ then return 0 else return 1 .− ϕe(f, x), where e = min(Sf,x).

Figure 2: The program for F

I(F)-compact. Fix f : N→ N and choose w0 ≥ i so that (a) Φi,β(f,w0)⇓ and
(b) for all k < i that are ever cancelled on an input of the form (f, x) have
been cancelled by input w0. Hence, either i has been cancelled on a (f,w)
with w < w0 or the construction must cancel i on input (f,w0). In either case
ϕi 6= F . Therefore, F /∈ C(β).

So much for similarities, the next two sections demonstrate some marked
differences between type-1 and type-2 complexity classes. To keep this paper a
reasonable size we shall omit proofs in these next two sections, but the proofs
can be found in [Li01].3

§7. Unions of complexity classes

The type-1 situation. The class of type-1 polynomial-time computable func-
tions is commonly referred to as a complexity class, but it is far from obvious
that there is a tP ∈ R that names exactly that class. That there is such a
tP follows from the following quite difficult result, which holds when Φ is an
arbitrary complexity measure.

Theorem 16 (The Union Theorem, McCreight and Meyer [MM69,

Odi99]). Suppose that t : N2 → N is computable and nondecreasing in its

first argument. Then there is a computable g : N → N such that C(g) =⋃
i C(λx t(i, x)).

This theorem is barely true in the sense that you want the g of the theorem
to have any nice properties (e.g., honesty), then you find the result breaks.

The type-2 situation. Since the Union Theorem is fairly delicate, it is no
surprise that it is fails to hold in its full strength at type-2. However, the
failure is spectacular. Here is an important example of this.

Theorem 17 (Li [Li01]). The class of type-2 basic feasible functionals fails

to be a type-2 complexity class.

3A late draft of this is available as: ftp://ftp.cis.syr.edu/users/royer/CCLthesis.ps.

15 March 2001

134

Type-2 Complexity Classes 13

To obtain some measure of how bad this failure is and to obtain some suf-
ficient conditions on a weak version the union theorem at type-2, we introduce
some conditions on type-2 complexity bounds. To keep this paper a reasonable
length, we shall not explain these notions beyond their definitions.

Definition 18.

(a) We say that (σ, x) is a locking fragment of β (denoted β(σ, x)↓) if and
only if for all τ ⊇ σ, β(τ, x) = β(σ, x).

(b) We say that ` : F ×N→ { 0, 1 } is a locking detector for β if and only
if (i) ` is computable, (ii) for each f and x, limσ→f `(σ, x) = 1, and (iii) for
each σ and x, `(σ, x) = 1 implies that β(σ, x)↓.

(c) A minimal locking fragment of β is a locking fragment of β such that,
for all for all τ ⊆ σ, (τ, x) fails to be a locking fragment of β.

(d) We say that β is useful if and only if for every (σ, x), minimal locking
fragment of β, we have that, for each τ ⊆ σ, β(τ, x) ≥ ‖τ‖+ |x|+ 2.4 3

Definition 19. Let 〈βi〉i∈N be a sequence of elements of WB such that the
function λi, σ, x βi(σ, x) is computable. We say that:

(a) 〈βi〉i∈N is ascending if and only if, for all i, βi ≤ βi+1.
(b) 〈βi〉i∈N is useful if and only if each βi is useful.
(c) 〈βi〉i∈N is convergent if and only if, for each f and x, there is a σf,x ⊂ f

such that for all i, βi(σf,x, x)↓.
(d) 〈βi〉i∈N uniformly convergent if and only if, for all i, x, and σ, if

βi(σ, x)↓, then for all j, βj(σ, x)↓.
(e) 〈βi〉i∈N strongly convergent if and only if 〈βi〉i∈N is uniformly convergent

and there is a locking detector for β0. 3

Theorem 20 (Li [Li01]). There is a ascending, useful, convergent 〈βi〉i∈N

such that
⋃

i C(βi) is not a complexity class.

This is a fairly strong non-union result. We conjecture that convergent
can be strengthened to uniformly convergent in the previous theorem. By
strengthening the hypotheses on the βi’s even more, we can obtain the follow-
ing weak union theorem. We conjecture that this theorem fails if we require
all the complexity bounds to be elements of SB.

Theorem 21 (The Weak Type-2 Union Theorem, Li [Li01]). Suppose

that 〈βi〉i∈N is ascending, useful, and strongly convergent. Then there is a

β ∈WB such that C(β) =
⋃

i C(βi).

4There is a different definition of useful in [Li01] that is more understandable, but requires

a bit of back-story.

15 March 2001

135

Type-2 Complexity Classes 14

One nice consequence of this theorem is that type-2 big-O classes are com-
plexity classes. We conjecture, however, that the SB version of the following
is false.

Corollary 22. Suppose β ∈ WB. Let O(β) =
⋃

a,b∈N C(a · β + b). Then

O(β) is a complexity class.

§8. Gaps and compressions

The type-1 situation. We know by Rabin’s Theorem that for each t ∈ R, there
is a t′ ∈ R such that C(t) (C(t′). However, effectively constructing such a
t′ from a given t turns out to be impossible as shown by the following two
theorems. (N.B. Constructing such a t′ from a program for t is easy, but that
is not the issue here.)

Theorem 23 (The Gap Theorem, Borodin [Bor72]). For each r ∈ R,

there is an increasing t ∈ R such that C(t) = C(r ◦ t), in fact, there is no i

with t ≤∗ Φi ≤∗ r ◦ t.

Theorem 24 (The Operator Gap Theorem, Constable [Con72] and

Young [You73]). For each recursive operator Θ: (N → N) → (N → N),
there is an increasing t ∈ R such that C(t) = C(Θ(t)), in fact, there is no i

with t ≤∗ Φi ≤∗ Θ(t).

In both of these theorems, the reason for the gap in which no Φi lives is that
the t’s in question are pathologically dishonest. If we restrict our attention
to more sensible names for complexity classes, we obtain the following result
that matches our intuitions a bit better.

Theorem 25 (The Compression Theorem, Blum [Blu67]). There is a

computable r : N2 → N such that for all i with ϕi ∈ R, we have C(Φi) (

C(λx r(x,Φi(x))).

The type-2 situation. The fact that the β’s are tied to queries imposes a
sort of honesty on our time bounds. We thus loose the gap phenomenon at
type-2 as shown by:

Theorem 26 (The WB Inflation Theorem, Li [Li01]). There is a re-

cursive operator Θ such that, for each β ∈ WB, Θ(β) ∈ WB and C(β) (

C(Θ(β)).

We do obtain a gap theorem for unions. But given the wiggly nature of
unions, this is not surprising nor is it particularly hard to show.

Theorem 27 (The Union-Gap Theorem, Li [Li01]). For each recursive

operator Θ such that for each β ∈ WB, Θ(β) ∈ WB, there is an ascending

〈βi〉i∈N such that
⋃

i C(βi) =
⋃

i C(Θ(βi)).

15 March 2001

136

Type-2 Complexity Classes 15

§9. Conclusion

General type-2 complexity theory is almost completely unknown territory. In
this paper we have blazed one path into this territory. This path is obviously
not the only such and it likely is not the best, but we feel that it represents a
creditable bit of exploration. In particular we suspect that the failure of the
union and gap theorems will be features of any reasonable complexity theory
for type-2.

There are obviously many open questions: What happens with the speedup
theorems? What happens if we restrict all the β’s to SB? What if we change
to the unit cost model for OTMs? If we are stuck with naming large classes
(e.g., the type-2 basic feasible functions) through unions, what are the general
properties of these union classes. (Li [Li01] addresses many of these questions.)
Going a little farther, one can ask: How can one extend our work to cover the
effectively continuous type-2 functionals? (This requires a careful treatment
of computation over partial (e.g., N ⇀ N) arguments.) How can we extend
this work beyond type-2? (Our notion of complexity bound seems amenable
to realizer-based definitions of higher-type classes.)

References

[Blu67] M. Blum, A machine-independent theory of the complexity of recursive func-
tions, Journal of the Association for Computing Machinery 14 (1967), 322–
336.

[Bor72] A. Borodin, Computational complexity and the existence of complexity gaps,
Journal of the Association for Computing Machinery 19 (1972), 158–174.

[CK90] S. Cook and B. Kapron, Characterizations of the basic feasible functions of
finite type, Feasible Mathematics: A Mathematical Sciences Institute Work-
shop, (S. Buss and P. Scott, eds.), Birkhäuser, 1990, pp. 71–95.

[Con72] R. Constable, The operator gap, Journal of the Association for Computing
Machinery 19 (1972), 175–183.

[Con73] R. Constable, Type two computational complexity, Proc. of the Fifth Ann.
ACM Symp. on Theory of Computing, 1973, pp. 108–121.

[CU93] S. Cook and A. Urquhart, Functional interpretations of feasibly constructive
arithmetic, Annals of Pure and Applied Logic 63 (1993), 103–200.

[HS65] J. Hartmanis and R. Stearns, On the computational complexity of algorithms,
Transactions of the American Mathematical Society 117 (1965), 285–306.

[IKR01] R. Irwin, B. Kapron, and J. Royer, On characterizations of the basic feasible
functional, Part I, Journal of Functional Programming (2001), to appear.

[Kap91] B. Kapron, Feasible computation in higher types, Ph.D. thesis, Department
of Computer Science, University of Toronto, 1991.

[KC96] B. Kapron and S. Cook, A new characterization of type 2 feasibility, SIAM
Journal on Computing 25 (1996), 117–132.

15 March 2001

137

Type-2 Complexity Classes 16

[Li01] C.-C. Li, Type-2 complexity theory, Ph.D. thesis, Syracuse University, 2001.

[MM69] E. McCreight and A. Meyer, Classes of computable functions defined by
bounds on computation, Proc. of the First Ann. ACM Symp. on Theory of
Computing, 1969, pp. 79–88.

[Odi89] P. Odifreddi, Classical recursion theory, North-Holland, 1989.

[Odi99] P. Odifreddi, Classical recursion theory, volume II, North-Holland, 1999.

[Rab60] M. Rabin, Degree of difficulty of computing a function and a partial ordering
of the recursive sets, Report 2, University of Jerusalem, 1960.

[Rog67] H. Rogers, Theory of recursive functions and effective computability, Mc-
Graw-Hill, 1967, reprinted, MIT Press, 1987.

[Set92] A. Seth, There is no recursive axiomatization for feasible functionals of type
2, Seventh Annual IEEE Symposium on Logic in Computer Science, 1992,
pp. 286–295.

[Set94] A. Seth, Complexity theory of higher type functionals, Ph.D. thesis, Univer-
sity of Bombay, 1994.

[You73] P. Young, Easy constructions in complexity theory: Gap and speed-up the-
orems, Proceedings of the American Mathematical Society 37 (1973), 555–
563.

15 March 2001

138

