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Abstract. We present BUFOIDL, a new bottom-up algorithm for learning first 
order decision lists.  Although first order decision lists have potential as a 
representation for learning concepts that include exceptions, such as language 
constructs, previous systems suffered from limitations that we seek to overcome 
in BUFOIDL.  We present experiments comparing BUFOIDL to previous work 
in the area, demonstrating the system’s potential. 

1  Introduction 

In machine learning, there are a variety of metrics that can be applied to algorithms.  
An important measure of any learning algorithm is, of course, predictive accuracy.  
However, the degree to which the representation used fits the problem and the 
comprehensibility of the resulting set of rules can also have a significant impact on 
the usefulness of a system. 
Our primary area of interest is in applying machine learning algorithms to language 
problems.  Here, much of the successful work has been statistical in nature.   
However, statistical methods are limited in their expressiveness and produce rules that 
are not easy for humans to understand.  Therefore, we believe that work in language 
learning that uses more expressive representations that are more amenable to human 
understanding is desirable. 
One rule representation that seems to be a very good fit for language learning is that 
of decision lists.  Decision lists are particularly good for representing concepts with 
general rules that have exceptions.  In previous work, we showed that first-order 
decision lists are a highly effective representation for learning a morphological 
concept (specifically generating the past tense form of a verb given the base form) [8]. 
However, the FOIDL system has one major flaw: efficiency.  FOIDL is very effective 
when run on a fairly small example set and produces a very understandable set of 
rules.  However, it is a top-down algorithm that quickly blows up in the face of large 
numbers of examples and a large search space of constants, as will be demonstrated 
below.  This property limits the practical usefulness of the algorithm, since language 
learning generally involves a large search space and a large number of examples. 
This issue has been previously addressed by Manandhar, Džeroski, and Erjavec [7], 
who recognized the potential of FOIDL’s representation and attempted to address the 
efficiency problems of the algorithm in their CLOG system.  CLOG is a very fast 



algorithm.  However, it has its own set of flaws, particularly in terms of generality 
and accuracy, as will be discussed further below. 
We have developed BUFOIDL, a system that addresses the issues of effective and 
efficient induction of first order decision lists, providing accuracy comparable to that 
of FOIDL and time complexity that (although not rivaling CLOG’s speed) is far more 
acceptable than that of FOIDL. 
The remainder of this paper is organized as follows: Section 2 presents background 
material on first order decision lists, FOIDL, and CLOG.  Section 3 presents the 
BUFOIDL algorithm.  Section 4 presents experimental results comparing the three 
systems. Section 5 briefly discusses other relevant work.  The final section concludes 
and presents some directions for future work. 

2 Background 

In this section, we explain what we mean by first-order decision lists and briefly 
describe the two systems that inspired our work: FOIDL and CLOG. 

2.1 First-Order Decision Lists 

First-order decision lists are ordered sets of clauses, each of which ends in a cut.  
Thus, as the clauses are tried in order, only the answer produced by the first matching 
clause is obtained.   This is basically a first-order extension of prepositional decision 
lists [13], where each rule consists of a set of tests and a category label, and an 
example is assigned to the category label for the first rule such that the example meets 
the tests.  Initial work in this area learned rules in the order in which they are applied 
[13,6], but Webb and Brkič [14] pointed out the advantages of learning the rules in 
reverse order, since more general rules tend to be learned first given most preference 
functions.  FOIDL takes this approach, and we follow it as well. 

2.2 The FOIDL Algorithm 

FOIDL is a top-down inductive logic programming algorithm based largely on FOIL 
[11].  To FOIL, FOIDL adds three primary features: 

• the ability to handle intensionally defined background predicates, 
• the ability to handle implicit negative using a concept of output completeness, 
• and the ability to learn first-order decision lists. 

The first of these is fairly straightforward, but is one of the causes of time spent by the 
algorithm.  FOIDL must actually execute each rule formed for each example because 
of the intensional background. 
The second distinguishing feature of FOIDL is its use of an output completeness 
assumption to handle implicit negative examples.  In order to make use of this 
assumption, the predicate to be learned must have a mode associated with it, 
indicating which arguments are input(s) and which are output(s).  Then the 



assumption may be made that for any unique input pattern for which a positive 
example is provided, all other positive examples with that input pattern are also in the 
training set.  Clearly, this is the case for any predicate that represents a function with a 
unique output for each input. 
Once we have this assumption, we can quantify the number of implicit negative 
examples covered by a clause.  For each example, we produce an output query that 
specifies the inputs.  If the clause applied to the output query produces a ground 
answer that does not match a correct output for the input, it covers a single negative 
for that example.  If it produces a non-ground answer, FOIDL estimates the number 
of examples covered based on a parameter indicating the size of the universe from 
which an answer might be taken. 
The output completeness assumption is not specific to the induction of first-order 
decision lists and has been used in learning relations that are not functions [4,5].  Note 
that it is less restrictive than the closed world assumption in the sense that the system 
must be guaranteed only all correct outputs for each input actually present in a given 
data set.  For further discussion of the advantages of the output completeness 
assumption, see [4]. 
The third distinguishing feature of FOIDL is its ability to learn first-order decision 
lists.  It does this by first learning a clause that covers as many positive examples as 
possible.  Note that this clause may produce incorrect answers for examples that have 
not yet been covered.  For the case of producing the past tense in English, this might 
be a rule such as: 
past(A,B) :- split(B,A,[e,d]). 

where split is a predicate whose second and third arguments are non-empty lists that 
produce the first argument when appended together. 
In developing subsequent rules, clauses are constrained to not cover previously 
covered examples.  So the next rule to be learned might be: 
past(A,B):- split(B,A,[d], 
      split(A,C,[e]). 

where the literal that constrains A to end in e is required to keep this special case rule 
from firing for examples that should be covered by the default rule. 
The basic algorithm for learning a clause in FOIDL is explained in Figure 1. 
This is complicated slightly be the idea of exceptions to exceptions.  For example, 
consider the case of a verb ending in y in English.  To produce the past tense, you 
typically remove the y and add ied.  However, to learn this rule requires covering 
some examples that end in y but still add ed to produce the past tense (consider delay).  
To accommodate this, FOIDL will “uncover” previously covered positive examples 
(adding them to positives-to-cover) if doing so allows the system to learn a rule that 
covers a sufficient number of positive examples. 
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nitialize C to R(V1,V2,…Vk) where R is the target  
       predicate with arity k 
nitialize T to contain all examples in positives-to- 
       cover and output queries for all positive  
       examples 
hile T contains output queries  
  Find the best literal L to add to the clause 
  Let T’ be the subset of positive examples in T whose  
          output query still produces a first answer  
          that unifies with the correct answer, plus  
          the output queries in T that either 
     1)Produce a non-ground first answer that unifies  
                 with the correct answer, or 
     2)Produce an incorrect answer but produce a  
                 correct answer using a previously  
                 learned clause 
eplace T by T’ 

Fig. 1. FOIDL algorithm for learning a clause 
IDL seems to be very effective at learning concepts that fit the first-order decision 
t representation.  However, it does have some drawbacks.  It requires that all 
nstants be explicitly specified, since it works exclusively in a top-down fashion.  
r the past tense problem, this requires the generation of all possible prefixes and 
ffixes that appear in multiple examples, and it requires searching through that 
ace.  The primary issue with FOIDL is simply that it cannot be applied to too many 
amples, particularly if the search space of constants and/or background predicates is 
ge. 

 CLOG 

e CLOG system was developed because attempts to apply FOIDL to other 
oblems showed its limitations in regard to processing speed [7].  CLOG shares a 
mber of characteristics with  FOIDL, but takes a different approach to learning 
ividual clauses. 

ke FOIDL, CLOG uses the concept of output completeness to allow for implicit 
gatives and it produces first-order decision lists in the same order as FOIDL, 
epending each new clause to the decision list.  
wever, the way in which CLOG learns rules is quite different.  In the following 
cussion, PTC represents positive examples not covered by the decision list, and 
E represents positive examples already covered by the decision list.  Until all 

amples are in CPE, CLOG selects an arbitrary example and creates all of the 
ssible clauses that cover that example (using a user-defined predicate that accepts 
 example and returns the appropriate clauses for the example).  For each of those 
uses, it counts the number of examples in PTC that the clause covers positively and 



negatively and then the number of examples in CPE that are positively or negatively 
covered by the clause.  Given those four counts, CLOG calls a user-defined gain 
function to determine which of the clauses is best.  Once a clause has been selected, 
examples positively covered by that clause are removed from PTC and added to CPE 
and examples negatively covered by the clause are added to PTC and removed from 
CPE. 
This approach has some advantages over that of FOIDL.  First, it is very fast, as will 
be shown in the discussion of experimental results.  Second, it does not require the 
search through the space of constants, since those are created in the development of 
the possible covering clauses.  Third, the management of exceptions to exceptions is 
integral to the algorithm 
However, the approach also has its own set of drawbacks.  It requires that the user of 
the system specify a predicate to generate the possible clauses covering a given 
example.  In the case of morphological learning, the domain to which CLOG has been 
applied, this is relatively straightforward; however, it is easy to imagine cases where it 
would not be easy to do.  The system is also being given a considerable amount of 
knowledge about what a clause is “supposed” to look like, so that needs to be taken 
into consideration when doing comparisons. 
The second major drawback of the system is that the arbitrary choice of an example 
for building a rule means that rules are likely to not be constructed from most general 
to least general.  An examination of the rules produced by CLOG quickly shows that 
it often fails to learn a general “default” rule.  Manandhar, Dzeroski, and Erjavec [7] 
point this out as a positive feature in comparison to FOIDL, since the system is more 
likely to fail to produce any answer than to produce an incorrect answer.  However, 
we would argue that a wrong answer may be more desirable than no answer at all.  
When trying to generate the past tense form of “steal”, we believe that it is better to 
produce “stealed” than to produce nothing, since the incorrect answer is, in fact, 
comprehensible, even though it is wrong.  Certainly, there are cases where it may be 
desirable to fail instead, but first-order decision lists seem to be most applicable to 
those cases where a default answer is likely to be appropriate.  We will also show that 
CLOG’s accuracy is not consistently competitive with FOIDL’s. 

 3 BUFOIDL 

The BUFOIDL (Bottom-Up First Order Induction of Decision Lists) algorithm was 
inspired by a desire to overcome the limitations of FOIDL without trading off 
accuracy and flexibility.  Since the primary cause of FOIDL’s long learning times 
stems from its top-down search through a large space of constants and possible 
literals, we decided to take a bottom-up approach to the problem. 

Many characteristics of BUFOIDL come directly from FOIDL.  BUFOIDL 
handles intensionally defined background predicates in much the same way as 
FOIDL.  It uses the output completeness assumption to handle implicit negative 
examples just as FOIDL and CLOG do.  It constructs the decision list in the same way 
as FOIDL, first learning a most general clause, then learning more specialized 



Get-Generalizations(PTC,PCE,old-clauses) 
 Initialize example-pool to PTC 
 Set prev-clauses to empty 
 For each cur-clause in old-clauses 
   Evaluate cur-clause 
   If cur-clause covers more positives than negatives 
      Remove covered positives from example-pool 
   Else old-clauses = old-clauses - clause 
 Repeat 
   Select  
     k pairs of examples from example-pool 
     k pairs of one example from example-pool and one  
         clause from prev-clauses 
     k pairs of clauses from prev-clauses 
   Generate the most-specific clause covering each 
         selected example 
   For each pair  
      cur-clause = the LGG of the pair 
      Evaluate cur-clause 
      If cur-clause covers more positives than 
            negatives 
         Add cur-clause to prev-clauses 
         Remove covered positives from example-pool 
         Move parent(s) of cur-clause to old-clauses 
 Until no new clauses are found 
 Return old-clauses + prev-clauses 

Fig. 2. BUFOIDL algorithm for creating a set of generalizations from which to select a new 
clause. 

 

“exceptions” to the clauses below.  BUFOIDL also uncovers positive examples under 
the same circumstances as FOIDL. 
Thus, the algorithm for the outer loop is very similar to FOIDL’s outer loop.  
BUFOIDL, however, takes a different approach to the construction of individual 
clauses, inspired by previous bottom-up approaches, particularly from GOLEM [9] 
and PROGOL [10]. 

3.1 Clause Construction 

BUFOIDL constructs a group of potential clauses and selects from that group the best 
next.  The clause construction algorithm, which is very close to GOLEM, much as 
FOIDL follows FOIL, is shown in Figure 2. 
Note that old-clauses parameter refers to clauses other than the one selected on 
previous iterations.  It does not include clauses from the current definition. 

Several aspects of this algorithm require explanation.  First, the concept of a 
“most-specific clause” is a difficult issue, and one of the problems that all bottom-up 



Example: past([k,6,m],[k,e,m]). 
Type: past(word,word) 
Mode: past(+,-) 
 
Background: split(X,Y,Z) 
Type: split(word, prefix, suffix) 
Mode: split(+,-,-) or split(-,+,+) 
 
Most-specific clause: 
    past([k,6,m],[k,e,m]) :- 
        split([k,e,m],[k],[e,m]), 
        split([k,e,m],[k,e],[m]), 
        split([k,6,m],[k],[6,m]), 
        split([k,6,m],[k,6],[m]).  

Fig. 3. Example of most-specific clause generation in BUFOIDL. split(X,Y,Z) is equivalent 
to append(Y,Z,X) with non-empty Y and Z 

 

approaches to ILP must address in some way.  We allow intensionally defined 
background predicates, so we cannot use RLGGs as GOLEM does [9].  We chose not 
to require extensive information about the syntactic form of the learned clause as 
systems such as CLOG and PROGOL do [7,10].  Instead, we take the approach of 
using only type and mode information for each of the predicates, and applying the 
background predicates to the initial example in all possible ways, collecting the 
resulting literals and using the conjunction of all of those literals as the “most-specific 
clause”.  For some problems, this process might need to be repeated multiple times, 
and could lead to significant increase in complexity of the LGG process, but 
BUFOIDL attempts to control this complexity in two ways.  A parameter is provided 
to limit the maximum times the technique is applied, and BUFOIDL attempts to learn 
clauses using a single level, using multiple applications of the technique only when 
the system fails to learn a new clause (on the principle that the system is designed to 
learn more general clauses first).  As an example of the construction of a most-
specific clause, consider Figure 3, taken from the English past tense task.  . 
For some problems, this collection of literals needs to be done multiple times, so 
BUFOIDL has a depth parameter that determines how deep this search for literals is 
permitted to go.  The system then performs an iterative deepening search, increasing 
the depth of the literal collection process when the algorithm fails to produce an 
acceptable new clause. 
For the past tense problem that we focus on here, a depth of 1 is sufficient, and, in 
fact, the types and modes used by FOIDL and BUFOIDL for the problem, as well as 
the clause construction predicate used with CLOG, all constrain the learned rules to 
have a depth of 1.  This actually may limit the ability of the representation to 
appropriately generalize exceptions such as drink-drank, but it is not a problem for 
the task in general. 

Clauses are evaluated using output queries as described in Section 2.2.  Because 
clause creation is bottom-up, we need not be concerned with estimating the number of 
negatives covered by non-ground responses.  We simply eliminate any clause that 



produces non-ground answers as overly general.  Note that negative examples come 
in two forms: BUFOIDL allows for explicit negative examples, which are treated as 
negatives when covered in the usual way, but we also consider as negative any 
incorrect answer to an output query if and only if some previously learned clause 
produces a correct answer to that query.  Wrong answers for positive examples that 
have not yet been correctly covered are ignored, since we assume that they are 
exceptions to the current rule which will be handled by a rule that will be learned later 
(thus appearing earlier in the decision list). 
Note that clauses covering examples negatively are kept for consideration and 
generalization if they cover more positives than negatives (i.e. produce more correct 
than incorrect ground responses).  This is to allow for the possibility of exceptions to 
exceptions as discussed in Section 2.2 and below. 
Another important aspect of BUFOIDL’s clause construction is the process of search 
for a good generalization.  Rather than randomly selecting one or several pairs and 
then generalizing each of those as much as possible without over-generalizing, 
BUFOIDL attempts a wider search, randomly selecting pairs of examples and rules 
repeatedly in a single clause construction phase and generalizing each pair as little as 
possible.  The reason for this approach is that we would like to select the single most 
general clause possible at each step.  This is not as important for an unordered set of 
rules such as GOLEM constructs.  Of course, our approach cannot guarantee finding 
the best clause, but no heuristic search method can.  Like GOLEM, BUFOIDL prunes 
the learned clause, dropping unnecessary literals. 
Finally, note that k, the number of pairs to be generalized at each iteration, is a 
parameter to the algorithm.  It should be set with some attention to the expected 
number of rules in the decision list to help ensure that at least one acceptable 
generalization will be found.  Too many pairs should not harm the quality of the 
decision list learned, but will increase learning time, since the algorithm’s execution 
time is highly dependent on the number of pairs selected at each pass. 

3.2 Building the Decision List 

As stated previously, BUFOIDL builds its decision list from the bottom up, placing 
the first, most general, rule learned at the end and prepending newly learned clauses 
to the list.  However, a few details of the algorithm merit further explanation.  The 
basic algorithm appears in Figure 4.    

In order to make the search for clauses more efficient, BUFOIDL saves all of the 
acceptable clauses from previous iterations and evaluates them at the beginning of the 
search for a new clause, removing examples they cover from the pool to be 
generalized from if the clause is acceptable.  While this is unlikely to helpful in all 
cases, as after the creation of the default clause, it may be very helpful later, when two 
clauses to be learned may not interact.   



PTC = positive-examples 
old-clauses = {} 
CPE = {} 
dec-list = empty 
while PTC not empty and not done 
   gen-list = Get-Generalizations(PTC,CPE,old-clauses) 
   if gen-list is empty 
      done = true 
   else if some gen in gen-list covers no negatives 
      best-gen = the generalization covering no  
           negatives and the most positives 
      Add best-gen to beginning of dec-list 
      newCPE = the positives covered by best-gen 
      PTC = PTC – newCPE 
      CPE = CPE + newCPE 
      old-clauses = gen-list – best-gen 
   else 
      best-gen = the generalization with the greatest  
           difference between # of positives covered  
           and # of negatives covered 
      newPTC = the positive examples corresponding to  
           the negatives covered by best-gen 
      PTC = PTC + newPTC 
      CPE = CPE – newPTC 
      old-clauses = gen-list 

Fig. 4. Algorithm for building the decision list in BUFOIDL. 

 
 

For example, in handling English plurals, we may learn a default clause that adds s 
to a word.  We then may create two clauses, one that adds es if the word ends in s and 
one that adds es if the word ends in z.  Both are clauses that we want in the decision 
list, and they do not interact with each other.  BUFOIDL will be able add the clause 
that covers more examples and save the other to add in the next iteration of the loop 
without having to reconstruct it.  Given BUFOIDL’s broad search, this is important to 
the overall efficiency of the algorithm. 

4 Experimental Evaluation 

To evaluate BUFOIDL, we ran experiments using the English past tense task for 
which FOIDL was initially developed.  This data set is one that all three systems can 
easily be applied to; it is fairly well known; and it is large enough to allow us to 
determine whether BUFOIDL actually overcomes the performance problems that 
limit FOIDL. 
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4.1 Experimental Design 

The data used consists of 1390 verbs paired with their past tense forms in UNIBET 
phonemic encoding.  The task is to generate the past tense form of the verb given the 
base form.  We actually performed two experiments: one using the full set of verbs 
and a second that used only the regular verbs.  The second task is much simpler than 
the first, and allows for 100% accuracy in theory (as the full task does not). 
All three systems used the background predicate split/3 described earlier in the paper.  
For CLOG, we used an intermediate predicate called mate that simplifies the 
construction of the possible generalizations of an example.  All of the user-defined 
portions of CLOG are used as provided for the tasks of generating English plurals.  
This is an example that comes with the system, and is highly similar in nature to the 
past tense task.  The primary parameter for BUFOIDL is the number of pairs to select.   
For the regular task, the number of pairs was set to 10, and we used 25 pairs when 
irregular verbs were included, since there is a much larger number of clauses to be 
learned in this case.  In these experiments, we used a 10-fold cross-validation of the 
data, and also ran learning curves.  Statistical significance was determined using 2-
tailed paired t-tests.  
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4.2 Experimental Results 

Figure 5 shows the results of running the three systems on the full past tense task.  
BUFOIDL and FOIDL perform well and very similarly on the task.  With very few 
examples, BUFOIDL actually outperforms FOIDL, though FOIDL does slightly 
better than BUFOIDL with large numbers of examples.  The differences between 
these two systems are attributable to the different search mechanisms.  Like its 
predecessor FOIL, FOIDL uses a hill-climbing approach that is typically effective but 
can fail.  BUFOIDL uses a broader search through the space, but it does have a 
random element.  It seems that each approach can outperform the other at times, but 
there are no statistically significant differences between the two systems. 
It is important to note, regarding CLOG’s performance on the past tense task, that 
running these experiments highlighted one of the potential problems with CLOG’s 
approach.  As explained earlier, CLOG requires that the user of the system supply 
predicates to construct the set of clauses that are possible generalizations of an 
example, to specify whether a clause is a generalization of another clause, and to 
specify a gain function.  In order to run the past tense task, we used predicates for 
these purposes that the system developers supply for the task of producing English 
plurals, since that task has many similarities to the past tense task.  However, the 
supplied predicates assume that the original word and the modified word (in the 
original task, the singular and plural forms; in our case, the base form and the past 
tense form of the verb) share a common prefix.  In general, this is the case, but our 
data set includes the pair go-went and eat-ate, for which the assumption does not hold 
true.  The presence of either of these verb pairs in a training set caused CLOG to fail 



Table 1. Learning times in seconds for the full phonetic past tense task using different 
numbers of examples 

 FOIDL CLOG BUFOIDL 

25 1.003 0.342 178.431 

50 4.541 1.076 199.121 

100 25.379 3.343 204.16 

250 407.225 11.487 179.859 

500 3956.708 30.505 201.558 

750 16,102.84 59.296 208.714 

1000 42,237.62 92.733 188.925 

1251 92,623.57 132.612 241.837 
without producing a decision list that could be tested.  This situation let to the results 
label CLOG-bad.  Therefore, we re-ran the experiments on slightly modified training 
sets from which those two verb pairs have been removed.  The performance of 
FOIDL and BUFOIDL was identical, but CLOG’s performance improves.  Note that 
the removal of these verbs, rather than reducing potential accuracy, actually makes 
the task of the learner slightly easier, since both pairs function purely as noise in 
learning the decision list. 
Clearly, this task demonstrates that CLOG is not always competitive with FOIDL and 
BUFOIDL in terms of predictive accuracy.  Its approach seems to suffer greatly from 
the large number of exceptions, and accuracy is actually lower with larger numbers of 
examples.  All of the differences between CLOG and BUFOIDL and those between 
CLOG and FOIDL with more than 25 training examples are statistically significant at 
the 0.01 level or better. 
Figure 6 shows the result of running the systems on just the regular verbs.  Here the 
systems are more comparable.  FOIDL and BUFOIDL again perform very similarly, 
while CLOG is significantly lower with 250 examples or fewer, but eventually 
catches up to the other two systems. 
So far we have shown that BUFOIDL has accuracy comparable to FOIDL’s, but this 
is not sufficient to motivate the development of a new algorithm.  The other issue is 
learning time.  Table 1 shows the learning times for the complete phonetic past tense 
task, and Table 2 shows the learning times for the task involving regular verbs only. 
These numbers clearly demonstrate the issue of learning time in FOIDL.  While the 
system learns quickly from a small number of examples, the learning time increases 
rapidly, quickly becoming unreasonable.  On the full phonetic past tense task, FOIDL 
averages over 25 hours of CPU time to learn from 1251 examples.  This problem is 
exacerbated by a related increase in memory use that makes it difficult to run larger 
problems at all.   
The learning times also show that CLOG’s designers achieved their goal of creating 
decision lists in far less time than FOIDL requires.  The difference is dramatic.  It is 



i
s
c
U
s
l
t
l
u

4

I
t
F
o
t
s
m
w
p
C
i
l
p
s
o

Table 2. Learning times in seconds for the regular past tense task using different numbers 
of examples 

 FOIDL CLOG BUFOIDL 

25 0.771 0.298 86.802 

50 3.347 0.941 87.525 

100 18.636 2.22 93.101 

250 230.096 7.777 109.334 

500 1716.971 15.422 121.364 

750 5586.535 24.072 101.839 

1000 15,930.2 32.318 116.58 

1125 17,951.2 36.391 113.085 
nteresting to note that the increasing number of exceptional cases seems to have a 
trong impact on both CLOG’s and FOIDL’s learning times.  However, it is very 
lear that CLOG can handle many more examples than FOIDL. 
nlike FOIDL and CLOG, BUFOIDL’s time depends less on the size of the training 

et than on the number of pairs selected.  Because of this, the system takes quite a bit 
onger than the others on small example sets.  In the full phonetic past tense task, the 
ime required by BUFOIDL does not even show a clear trend toward increasing 
earning times.  In the case of regular verbs only, the learning times trend more clearly 
pward, but they increase fairly slowly. 

.3 Discussion 

n considering the results presented here, it is important to recognize that each of the 
hree systems discussed in this paper have both strengths and weaknesses.   
OIDL provides consistent good accuracy, and can be very fast with small numbers 
f examples.  It is important to note that FOIDL performs quite well on tasks where a 
op-down approach would be expected to do well (relatively few constants, smaller 
pace of possible literals, fewer examples).  Preliminary experiments with the finite 
esh domain showed that FOIDL consistently outperformed BUFOIDL for that task, 
ith at least comparable accuracy and better speed.  However, FOIDL has significant 
roblems dealing with larger search spaces. 
LOG was developed in response to this key problem with FOIDL, and, as a result, it 

s very fast.  However, its two major drawbacks can be significant.  First, the decision 
ist learned (and its quality) may depend heavily on the order in which examples are 
resented, since CLOG simply generalizes the first example in the training example 
et at each iteration.   The learning algorithm does not seem to be as effective as the 
ther two in producing decision lists with good predictive accuracy. 



The second issue with CLOG is not a major drawback for the past tense task on which 
it was evaluated here, but could greatly limit the applicability of the approach.  For 
the past tense task (and other similar tasks), it is fairly easy to determine what 
possible clauses can be constructed to generalize a given example.  However, this is 
not the case for all tasks of potential interest.   To construct the needed user-defined 
predicates would be an onerous task for some problems. 
BUFOIDL is presented here as an alternative that does not share its predecessors’ 
weaknesses; however, it is not a perfect answer.  The system relies on the random 
selection of pairs of examples to generalize.  If an insufficient number of examples is 
chosen at each iteration, BUFOIDL may fail to learn an accurate decision list.  Of 
course, the system should not perform worse when selecting more pairs than required.  
The primary trade-off here is that the learning time is impacted by the number of pairs 
selected to learn from.  Selecting many more pairs than are required will result in 
longer learning times than necessary. 
A second weakness of BUFOIDL is its very long learning time for small training sets.  
Although BUFOIDL’s learning time for larger training sets is clearly superior to 
FOIDL’s, it takes far longer to learn from smaller training sets, since the training time 
is more closely tied to the number of pairs of examples chosen than to the number of 
examples in the training set.  However, we perceive the necessity of spending minutes 
rather than seconds to learn from 25 examples well worth the advantage of learning 
from 1000 examples in minutes (rather than hours) as well. 
Although BUFOIDL does not approach the lightning speed of CLOG, it clearly 
makes the learning of first-order decision lists with the level of accuracy that FOIDL 
provides a realistic possibility with larger example sets. 

5 Related Work 

The systems most closely related to BUFOIDL are CLOG and FOIDL.  However, 
three other systems deserve mention. 

Around the time of the development of FOIDL, Quinlan developed an alternate 
system for learning decision lists called FFOIL [12].  Quinlan’s approach is based on 
FOIL, requiring extensional definitions of background predicates.  While FFOIL does 
learn a decision list, it places the rules in the opposite order from BUFOIDL and 
FOIDL, so it does not take an approach of learning exceptions to previously learned 
rules.  It does, however, learn a default rule that simply predicts the most common 
output and places that rule at the bottom of the decision list. 
The TILDE system [1,2] is also very closely related to BUFOIDL.  TILDE induces 
logical decision trees using a top-down approach that incorporates Blockeel and De 
Raedt’s method of learning from interpretations.  Blockeel and De Raedt show that 
their binary logical decision trees are equivalent in expressiveness to first order 
decision lists.  However, their approach is not easily applicable to problems such as 
the past tense task discussed in this paper for two reasons.  First, their approach is a 
top-down approach that requires the specification of constants to be used in the 
definitions (a problem FOIDL also suffers from).  More importantly, the method of 



learning from interpretations is specifically focused on classification tasks, and this 
particular task is not easily transformed into a classification paradigm. 
Another somewhat related area of work is transformation-based learning [3].  
Transformation-based learning systems learn a list of rules, and each rule strives to 
correct the errors made by the previous rules.  Thus, we can see similarities of concept 
between the approaches of first-order decision list learning and transformation-based 
learning, as both do learn lists of rules, from general to specific, and both focus on 
learning rules to handle exceptions to previously learned rules.  However, 
transformation-based learning systems apply all of the learned rules in order, while 
decision lists apply only the first applicable rule.  Thus, one would expect the decision 
lists systems to be faster.  It remains to be seen whether either approach is more 
accurate than the other. 

6 Conclusions and Future Directions 

In this paper, we have presented a new approach for learning first-order decision lists 
and have shown that it provides considerable speed-up over the most accurate existing 
system for learning this representation, while also providing comparable accuracy.  
However, we have only applied the system to data that the existing top-down 
approach could handle.  The purpose in developing such a system is, of course, to be 
able to apply this learning approach to data sets too large for FOIDL.  Therefore, our 
major direction for future work is to attempt to apply BUFOIDL to appropriate tasks.  
We will be looking primarily at language tasks, since those seem to fit the decision 
list paradigm.  We also hope to do some comparisons between transformation-based 
learning approaches to language learning and decision list approaches. 
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