
Efficient and Effective Induction of First Order
Decision Lists

Mary Elaine Califf

Department of Applied Computer Science, Campus Box 5150, Illinois State University,
Normal, IL 61790 USA
mecalif@ilstu.edu

Abstract. We present BUFOIDL, a new bottom-up algorithm for learning first
order decision lists. Although first order decision lists have potential as a
representation for learning concepts that include exceptions, such as language
constructs, previous systems suffered from limitations that we seek to overcome
in BUFOIDL. We present experiments comparing BUFOIDL to previous work
in the area, demonstrating the system’s potential.

1 Introduction

In machine learning, there are a variety of metrics that can be applied to algorithms.
An important measure of any learning algorithm is, of course, predictive accuracy.
However, the degree to which the representation used fits the problem and the
comprehensibility of the resulting set of rules can also have a significant impact on
the usefulness of a system.
Our primary area of interest is in applying machine learning algorithms to language
problems. Here, much of the successful work has been statistical in nature.
However, statistical methods are limited in their expressiveness and produce rules that
are not easy for humans to understand. Therefore, we believe that work in language
learning that uses more expressive representations that are more amenable to human
understanding is desirable.
One rule representation that seems to be a very good fit for language learning is that
of decision lists. Decision lists are particularly good for representing concepts with
general rules that have exceptions. In previous work, we showed that first-order
decision lists are a highly effective representation for learning a morphological
concept (specifically generating the past tense form of a verb given the base form) [8].
However, the FOIDL system has one major flaw: efficiency. FOIDL is very effective
when run on a fairly small example set and produces a very understandable set of
rules. However, it is a top-down algorithm that quickly blows up in the face of large
numbers of examples and a large search space of constants, as will be demonstrated
below. This property limits the practical usefulness of the algorithm, since language
learning generally involves a large search space and a large number of examples.
This issue has been previously addressed by Manandhar, Džeroski, and Erjavec [7],
who recognized the potential of FOIDL’s representation and attempted to address the
efficiency problems of the algorithm in their CLOG system. CLOG is a very fast

algorithm. However, it has its own set of flaws, particularly in terms of generality
and accuracy, as will be discussed further below.
We have developed BUFOIDL, a system that addresses the issues of effective and
efficient induction of first order decision lists, providing accuracy comparable to that
of FOIDL and time complexity that (although not rivaling CLOG’s speed) is far more
acceptable than that of FOIDL.
The remainder of this paper is organized as follows: Section 2 presents background
material on first order decision lists, FOIDL, and CLOG. Section 3 presents the
BUFOIDL algorithm. Section 4 presents experimental results comparing the three
systems. Section 5 briefly discusses other relevant work. The final section concludes
and presents some directions for future work.

2 Background

In this section, we explain what we mean by first-order decision lists and briefly
describe the two systems that inspired our work: FOIDL and CLOG.

2.1 First-Order Decision Lists

First-order decision lists are ordered sets of clauses, each of which ends in a cut.
Thus, as the clauses are tried in order, only the answer produced by the first matching
clause is obtained. This is basically a first-order extension of prepositional decision
lists [13], where each rule consists of a set of tests and a category label, and an
example is assigned to the category label for the first rule such that the example meets
the tests. Initial work in this area learned rules in the order in which they are applied
[13,6], but Webb and Brkič [14] pointed out the advantages of learning the rules in
reverse order, since more general rules tend to be learned first given most preference
functions. FOIDL takes this approach, and we follow it as well.

2.2 The FOIDL Algorithm

FOIDL is a top-down inductive logic programming algorithm based largely on FOIL
[11]. To FOIL, FOIDL adds three primary features:

• the ability to handle intensionally defined background predicates,
• the ability to handle implicit negative using a concept of output completeness,
• and the ability to learn first-order decision lists.

The first of these is fairly straightforward, but is one of the causes of time spent by the
algorithm. FOIDL must actually execute each rule formed for each example because
of the intensional background.
The second distinguishing feature of FOIDL is its use of an output completeness
assumption to handle implicit negative examples. In order to make use of this
assumption, the predicate to be learned must have a mode associated with it,
indicating which arguments are input(s) and which are output(s). Then the

assumption may be made that for any unique input pattern for which a positive
example is provided, all other positive examples with that input pattern are also in the
training set. Clearly, this is the case for any predicate that represents a function with a
unique output for each input.
Once we have this assumption, we can quantify the number of implicit negative
examples covered by a clause. For each example, we produce an output query that
specifies the inputs. If the clause applied to the output query produces a ground
answer that does not match a correct output for the input, it covers a single negative
for that example. If it produces a non-ground answer, FOIDL estimates the number
of examples covered based on a parameter indicating the size of the universe from
which an answer might be taken.
The output completeness assumption is not specific to the induction of first-order
decision lists and has been used in learning relations that are not functions [4,5]. Note
that it is less restrictive than the closed world assumption in the sense that the system
must be guaranteed only all correct outputs for each input actually present in a given
data set. For further discussion of the advantages of the output completeness
assumption, see [4].
The third distinguishing feature of FOIDL is its ability to learn first-order decision
lists. It does this by first learning a clause that covers as many positive examples as
possible. Note that this clause may produce incorrect answers for examples that have
not yet been covered. For the case of producing the past tense in English, this might
be a rule such as:
past(A,B) :- split(B,A,[e,d]).

where split is a predicate whose second and third arguments are non-empty lists that
produce the first argument when appended together.
In developing subsequent rules, clauses are constrained to not cover previously
covered examples. So the next rule to be learned might be:
past(A,B):- split(B,A,[d],
 split(A,C,[e]).

where the literal that constrains A to end in e is required to keep this special case rule
from firing for examples that should be covered by the default rule.
The basic algorithm for learning a clause in FOIDL is explained in Figure 1.
This is complicated slightly be the idea of exceptions to exceptions. For example,
consider the case of a verb ending in y in English. To produce the past tense, you
typically remove the y and add ied. However, to learn this rule requires covering
some examples that end in y but still add ed to produce the past tense (consider delay).
To accommodate this, FOIDL will “uncover” previously covered positive examples
(adding them to positives-to-cover) if doing so allows the system to learn a rule that
covers a sufficient number of positive examples.

I

I

W

R

FO
lis
co
Fo
su
sp
ex
lar

2.3

Th
pr
nu
ind
Li
ne
pr
Ho
dis
CP
ex
po
an
cla
nitialize C to R(V1,V2,…Vk) where R is the target
 predicate with arity k
nitialize T to contain all examples in positives-to-
 cover and output queries for all positive
 examples
hile T contains output queries
 Find the best literal L to add to the clause
 Let T’ be the subset of positive examples in T whose
 output query still produces a first answer
 that unifies with the correct answer, plus
 the output queries in T that either
 1)Produce a non-ground first answer that unifies
 with the correct answer, or
 2)Produce an incorrect answer but produce a
 correct answer using a previously
 learned clause
eplace T by T’

Fig. 1. FOIDL algorithm for learning a clause
IDL seems to be very effective at learning concepts that fit the first-order decision
t representation. However, it does have some drawbacks. It requires that all
nstants be explicitly specified, since it works exclusively in a top-down fashion.
r the past tense problem, this requires the generation of all possible prefixes and
ffixes that appear in multiple examples, and it requires searching through that
ace. The primary issue with FOIDL is simply that it cannot be applied to too many
amples, particularly if the search space of constants and/or background predicates is
ge.

 CLOG

e CLOG system was developed because attempts to apply FOIDL to other
oblems showed its limitations in regard to processing speed [7]. CLOG shares a
mber of characteristics with FOIDL, but takes a different approach to learning
ividual clauses.

ke FOIDL, CLOG uses the concept of output completeness to allow for implicit
gatives and it produces first-order decision lists in the same order as FOIDL,
epending each new clause to the decision list.
wever, the way in which CLOG learns rules is quite different. In the following
cussion, PTC represents positive examples not covered by the decision list, and
E represents positive examples already covered by the decision list. Until all

amples are in CPE, CLOG selects an arbitrary example and creates all of the
ssible clauses that cover that example (using a user-defined predicate that accepts
 example and returns the appropriate clauses for the example). For each of those
uses, it counts the number of examples in PTC that the clause covers positively and

negatively and then the number of examples in CPE that are positively or negatively
covered by the clause. Given those four counts, CLOG calls a user-defined gain
function to determine which of the clauses is best. Once a clause has been selected,
examples positively covered by that clause are removed from PTC and added to CPE
and examples negatively covered by the clause are added to PTC and removed from
CPE.
This approach has some advantages over that of FOIDL. First, it is very fast, as will
be shown in the discussion of experimental results. Second, it does not require the
search through the space of constants, since those are created in the development of
the possible covering clauses. Third, the management of exceptions to exceptions is
integral to the algorithm
However, the approach also has its own set of drawbacks. It requires that the user of
the system specify a predicate to generate the possible clauses covering a given
example. In the case of morphological learning, the domain to which CLOG has been
applied, this is relatively straightforward; however, it is easy to imagine cases where it
would not be easy to do. The system is also being given a considerable amount of
knowledge about what a clause is “supposed” to look like, so that needs to be taken
into consideration when doing comparisons.
The second major drawback of the system is that the arbitrary choice of an example
for building a rule means that rules are likely to not be constructed from most general
to least general. An examination of the rules produced by CLOG quickly shows that
it often fails to learn a general “default” rule. Manandhar, Dzeroski, and Erjavec [7]
point this out as a positive feature in comparison to FOIDL, since the system is more
likely to fail to produce any answer than to produce an incorrect answer. However,
we would argue that a wrong answer may be more desirable than no answer at all.
When trying to generate the past tense form of “steal”, we believe that it is better to
produce “stealed” than to produce nothing, since the incorrect answer is, in fact,
comprehensible, even though it is wrong. Certainly, there are cases where it may be
desirable to fail instead, but first-order decision lists seem to be most applicable to
those cases where a default answer is likely to be appropriate. We will also show that
CLOG’s accuracy is not consistently competitive with FOIDL’s.

 3 BUFOIDL

The BUFOIDL (Bottom-Up First Order Induction of Decision Lists) algorithm was
inspired by a desire to overcome the limitations of FOIDL without trading off
accuracy and flexibility. Since the primary cause of FOIDL’s long learning times
stems from its top-down search through a large space of constants and possible
literals, we decided to take a bottom-up approach to the problem.

Many characteristics of BUFOIDL come directly from FOIDL. BUFOIDL
handles intensionally defined background predicates in much the same way as
FOIDL. It uses the output completeness assumption to handle implicit negative
examples just as FOIDL and CLOG do. It constructs the decision list in the same way
as FOIDL, first learning a most general clause, then learning more specialized

Get-Generalizations(PTC,PCE,old-clauses)
 Initialize example-pool to PTC
 Set prev-clauses to empty
 For each cur-clause in old-clauses
 Evaluate cur-clause
 If cur-clause covers more positives than negatives
 Remove covered positives from example-pool
 Else old-clauses = old-clauses - clause
 Repeat
 Select
 k pairs of examples from example-pool
 k pairs of one example from example-pool and one
 clause from prev-clauses
 k pairs of clauses from prev-clauses
 Generate the most-specific clause covering each
 selected example
 For each pair
 cur-clause = the LGG of the pair
 Evaluate cur-clause
 If cur-clause covers more positives than
 negatives
 Add cur-clause to prev-clauses
 Remove covered positives from example-pool
 Move parent(s) of cur-clause to old-clauses
 Until no new clauses are found
 Return old-clauses + prev-clauses

Fig. 2. BUFOIDL algorithm for creating a set of generalizations from which to select a new
clause.

“exceptions” to the clauses below. BUFOIDL also uncovers positive examples under
the same circumstances as FOIDL.
Thus, the algorithm for the outer loop is very similar to FOIDL’s outer loop.
BUFOIDL, however, takes a different approach to the construction of individual
clauses, inspired by previous bottom-up approaches, particularly from GOLEM [9]
and PROGOL [10].

3.1 Clause Construction

BUFOIDL constructs a group of potential clauses and selects from that group the best
next. The clause construction algorithm, which is very close to GOLEM, much as
FOIDL follows FOIL, is shown in Figure 2.
Note that old-clauses parameter refers to clauses other than the one selected on
previous iterations. It does not include clauses from the current definition.

Several aspects of this algorithm require explanation. First, the concept of a
“most-specific clause” is a difficult issue, and one of the problems that all bottom-up

Example: past([k,6,m],[k,e,m]).
Type: past(word,word)
Mode: past(+,-)

Background: split(X,Y,Z)
Type: split(word, prefix, suffix)
Mode: split(+,-,-) or split(-,+,+)

Most-specific clause:
 past([k,6,m],[k,e,m]) :-
 split([k,e,m],[k],[e,m]),
 split([k,e,m],[k,e],[m]),
 split([k,6,m],[k],[6,m]),
 split([k,6,m],[k,6],[m]).

Fig. 3. Example of most-specific clause generation in BUFOIDL. split(X,Y,Z) is equivalent
to append(Y,Z,X) with non-empty Y and Z

approaches to ILP must address in some way. We allow intensionally defined
background predicates, so we cannot use RLGGs as GOLEM does [9]. We chose not
to require extensive information about the syntactic form of the learned clause as
systems such as CLOG and PROGOL do [7,10]. Instead, we take the approach of
using only type and mode information for each of the predicates, and applying the
background predicates to the initial example in all possible ways, collecting the
resulting literals and using the conjunction of all of those literals as the “most-specific
clause”. For some problems, this process might need to be repeated multiple times,
and could lead to significant increase in complexity of the LGG process, but
BUFOIDL attempts to control this complexity in two ways. A parameter is provided
to limit the maximum times the technique is applied, and BUFOIDL attempts to learn
clauses using a single level, using multiple applications of the technique only when
the system fails to learn a new clause (on the principle that the system is designed to
learn more general clauses first). As an example of the construction of a most-
specific clause, consider Figure 3, taken from the English past tense task. .
For some problems, this collection of literals needs to be done multiple times, so
BUFOIDL has a depth parameter that determines how deep this search for literals is
permitted to go. The system then performs an iterative deepening search, increasing
the depth of the literal collection process when the algorithm fails to produce an
acceptable new clause.
For the past tense problem that we focus on here, a depth of 1 is sufficient, and, in
fact, the types and modes used by FOIDL and BUFOIDL for the problem, as well as
the clause construction predicate used with CLOG, all constrain the learned rules to
have a depth of 1. This actually may limit the ability of the representation to
appropriately generalize exceptions such as drink-drank, but it is not a problem for
the task in general.

Clauses are evaluated using output queries as described in Section 2.2. Because
clause creation is bottom-up, we need not be concerned with estimating the number of
negatives covered by non-ground responses. We simply eliminate any clause that

produces non-ground answers as overly general. Note that negative examples come
in two forms: BUFOIDL allows for explicit negative examples, which are treated as
negatives when covered in the usual way, but we also consider as negative any
incorrect answer to an output query if and only if some previously learned clause
produces a correct answer to that query. Wrong answers for positive examples that
have not yet been correctly covered are ignored, since we assume that they are
exceptions to the current rule which will be handled by a rule that will be learned later
(thus appearing earlier in the decision list).
Note that clauses covering examples negatively are kept for consideration and
generalization if they cover more positives than negatives (i.e. produce more correct
than incorrect ground responses). This is to allow for the possibility of exceptions to
exceptions as discussed in Section 2.2 and below.
Another important aspect of BUFOIDL’s clause construction is the process of search
for a good generalization. Rather than randomly selecting one or several pairs and
then generalizing each of those as much as possible without over-generalizing,
BUFOIDL attempts a wider search, randomly selecting pairs of examples and rules
repeatedly in a single clause construction phase and generalizing each pair as little as
possible. The reason for this approach is that we would like to select the single most
general clause possible at each step. This is not as important for an unordered set of
rules such as GOLEM constructs. Of course, our approach cannot guarantee finding
the best clause, but no heuristic search method can. Like GOLEM, BUFOIDL prunes
the learned clause, dropping unnecessary literals.
Finally, note that k, the number of pairs to be generalized at each iteration, is a
parameter to the algorithm. It should be set with some attention to the expected
number of rules in the decision list to help ensure that at least one acceptable
generalization will be found. Too many pairs should not harm the quality of the
decision list learned, but will increase learning time, since the algorithm’s execution
time is highly dependent on the number of pairs selected at each pass.

3.2 Building the Decision List

As stated previously, BUFOIDL builds its decision list from the bottom up, placing
the first, most general, rule learned at the end and prepending newly learned clauses
to the list. However, a few details of the algorithm merit further explanation. The
basic algorithm appears in Figure 4.

In order to make the search for clauses more efficient, BUFOIDL saves all of the
acceptable clauses from previous iterations and evaluates them at the beginning of the
search for a new clause, removing examples they cover from the pool to be
generalized from if the clause is acceptable. While this is unlikely to helpful in all
cases, as after the creation of the default clause, it may be very helpful later, when two
clauses to be learned may not interact.

PTC = positive-examples
old-clauses = {}
CPE = {}
dec-list = empty
while PTC not empty and not done
 gen-list = Get-Generalizations(PTC,CPE,old-clauses)
 if gen-list is empty
 done = true
 else if some gen in gen-list covers no negatives
 best-gen = the generalization covering no
 negatives and the most positives
 Add best-gen to beginning of dec-list
 newCPE = the positives covered by best-gen
 PTC = PTC – newCPE
 CPE = CPE + newCPE
 old-clauses = gen-list – best-gen
 else
 best-gen = the generalization with the greatest
 difference between # of positives covered
 and # of negatives covered
 newPTC = the positive examples corresponding to
 the negatives covered by best-gen
 PTC = PTC + newPTC
 CPE = CPE – newPTC
 old-clauses = gen-list

Fig. 4. Algorithm for building the decision list in BUFOIDL.

For example, in handling English plurals, we may learn a default clause that adds s
to a word. We then may create two clauses, one that adds es if the word ends in s and
one that adds es if the word ends in z. Both are clauses that we want in the decision
list, and they do not interact with each other. BUFOIDL will be able add the clause
that covers more examples and save the other to add in the next iteration of the loop
without having to reconstruct it. Given BUFOIDL’s broad search, this is important to
the overall efficiency of the algorithm.

4 Experimental Evaluation

To evaluate BUFOIDL, we ran experiments using the English past tense task for
which FOIDL was initially developed. This data set is one that all three systems can
easily be applied to; it is fairly well known; and it is large enough to allow us to
determine whether BUFOIDL actually overcomes the performance problems that
limit FOIDL.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

25 50 100 250 500 750 1000 1251
Number of training examples

Pe
rc

en
ta

ge
 a

cc
ur

ac
y

 1

CLOG
FOIDL
BUFOIDL
CLOG-bad

Fig. 5. Accuracy on full past tense task.

4.1 Experimental Design

The data used consists of 1390 verbs paired with their past tense forms in UNIBET
phonemic encoding. The task is to generate the past tense form of the verb given the
base form. We actually performed two experiments: one using the full set of verbs
and a second that used only the regular verbs. The second task is much simpler than
the first, and allows for 100% accuracy in theory (as the full task does not).
All three systems used the background predicate split/3 described earlier in the paper.
For CLOG, we used an intermediate predicate called mate that simplifies the
construction of the possible generalizations of an example. All of the user-defined
portions of CLOG are used as provided for the tasks of generating English plurals.
This is an example that comes with the system, and is highly similar in nature to the
past tense task. The primary parameter for BUFOIDL is the number of pairs to select.
For the regular task, the number of pairs was set to 10, and we used 25 pairs when
irregular verbs were included, since there is a much larger number of clauses to be
learned in this case. In these experiments, we used a 10-fold cross-validation of the
data, and also ran learning curves. Statistical significance was determined using 2-
tailed paired t-tests.

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

25 50 100 250 500 750 1000 1130
Number of Training Examples

Pr
ed

ic
tiv

e
A

cc
ur

ac
y

1

CLOG
FOIDL
BUFOIDL

Fig. 6. Performance on past tense task using only regular verbs

4.2 Experimental Results

Figure 5 shows the results of running the three systems on the full past tense task.
BUFOIDL and FOIDL perform well and very similarly on the task. With very few
examples, BUFOIDL actually outperforms FOIDL, though FOIDL does slightly
better than BUFOIDL with large numbers of examples. The differences between
these two systems are attributable to the different search mechanisms. Like its
predecessor FOIL, FOIDL uses a hill-climbing approach that is typically effective but
can fail. BUFOIDL uses a broader search through the space, but it does have a
random element. It seems that each approach can outperform the other at times, but
there are no statistically significant differences between the two systems.
It is important to note, regarding CLOG’s performance on the past tense task, that
running these experiments highlighted one of the potential problems with CLOG’s
approach. As explained earlier, CLOG requires that the user of the system supply
predicates to construct the set of clauses that are possible generalizations of an
example, to specify whether a clause is a generalization of another clause, and to
specify a gain function. In order to run the past tense task, we used predicates for
these purposes that the system developers supply for the task of producing English
plurals, since that task has many similarities to the past tense task. However, the
supplied predicates assume that the original word and the modified word (in the
original task, the singular and plural forms; in our case, the base form and the past
tense form of the verb) share a common prefix. In general, this is the case, but our
data set includes the pair go-went and eat-ate, for which the assumption does not hold
true. The presence of either of these verb pairs in a training set caused CLOG to fail

Table 1. Learning times in seconds for the full phonetic past tense task using different
numbers of examples

 FOIDL CLOG BUFOIDL

25 1.003 0.342 178.431

50 4.541 1.076 199.121

100 25.379 3.343 204.16

250 407.225 11.487 179.859

500 3956.708 30.505 201.558

750 16,102.84 59.296 208.714

1000 42,237.62 92.733 188.925

1251 92,623.57 132.612 241.837
without producing a decision list that could be tested. This situation let to the results
label CLOG-bad. Therefore, we re-ran the experiments on slightly modified training
sets from which those two verb pairs have been removed. The performance of
FOIDL and BUFOIDL was identical, but CLOG’s performance improves. Note that
the removal of these verbs, rather than reducing potential accuracy, actually makes
the task of the learner slightly easier, since both pairs function purely as noise in
learning the decision list.
Clearly, this task demonstrates that CLOG is not always competitive with FOIDL and
BUFOIDL in terms of predictive accuracy. Its approach seems to suffer greatly from
the large number of exceptions, and accuracy is actually lower with larger numbers of
examples. All of the differences between CLOG and BUFOIDL and those between
CLOG and FOIDL with more than 25 training examples are statistically significant at
the 0.01 level or better.
Figure 6 shows the result of running the systems on just the regular verbs. Here the
systems are more comparable. FOIDL and BUFOIDL again perform very similarly,
while CLOG is significantly lower with 250 examples or fewer, but eventually
catches up to the other two systems.
So far we have shown that BUFOIDL has accuracy comparable to FOIDL’s, but this
is not sufficient to motivate the development of a new algorithm. The other issue is
learning time. Table 1 shows the learning times for the complete phonetic past tense
task, and Table 2 shows the learning times for the task involving regular verbs only.
These numbers clearly demonstrate the issue of learning time in FOIDL. While the
system learns quickly from a small number of examples, the learning time increases
rapidly, quickly becoming unreasonable. On the full phonetic past tense task, FOIDL
averages over 25 hours of CPU time to learn from 1251 examples. This problem is
exacerbated by a related increase in memory use that makes it difficult to run larger
problems at all.
The learning times also show that CLOG’s designers achieved their goal of creating
decision lists in far less time than FOIDL requires. The difference is dramatic. It is

i
s
c
U
s
l
t
l
u

4

I
t
F
o
t
s
m
w
p
C
i
l
p
s
o

Table 2. Learning times in seconds for the regular past tense task using different numbers
of examples

 FOIDL CLOG BUFOIDL

25 0.771 0.298 86.802

50 3.347 0.941 87.525

100 18.636 2.22 93.101

250 230.096 7.777 109.334

500 1716.971 15.422 121.364

750 5586.535 24.072 101.839

1000 15,930.2 32.318 116.58

1125 17,951.2 36.391 113.085
nteresting to note that the increasing number of exceptional cases seems to have a
trong impact on both CLOG’s and FOIDL’s learning times. However, it is very
lear that CLOG can handle many more examples than FOIDL.
nlike FOIDL and CLOG, BUFOIDL’s time depends less on the size of the training

et than on the number of pairs selected. Because of this, the system takes quite a bit
onger than the others on small example sets. In the full phonetic past tense task, the
ime required by BUFOIDL does not even show a clear trend toward increasing
earning times. In the case of regular verbs only, the learning times trend more clearly
pward, but they increase fairly slowly.

.3 Discussion

n considering the results presented here, it is important to recognize that each of the
hree systems discussed in this paper have both strengths and weaknesses.
OIDL provides consistent good accuracy, and can be very fast with small numbers
f examples. It is important to note that FOIDL performs quite well on tasks where a
op-down approach would be expected to do well (relatively few constants, smaller
pace of possible literals, fewer examples). Preliminary experiments with the finite
esh domain showed that FOIDL consistently outperformed BUFOIDL for that task,
ith at least comparable accuracy and better speed. However, FOIDL has significant
roblems dealing with larger search spaces.
LOG was developed in response to this key problem with FOIDL, and, as a result, it

s very fast. However, its two major drawbacks can be significant. First, the decision
ist learned (and its quality) may depend heavily on the order in which examples are
resented, since CLOG simply generalizes the first example in the training example
et at each iteration. The learning algorithm does not seem to be as effective as the
ther two in producing decision lists with good predictive accuracy.

The second issue with CLOG is not a major drawback for the past tense task on which
it was evaluated here, but could greatly limit the applicability of the approach. For
the past tense task (and other similar tasks), it is fairly easy to determine what
possible clauses can be constructed to generalize a given example. However, this is
not the case for all tasks of potential interest. To construct the needed user-defined
predicates would be an onerous task for some problems.
BUFOIDL is presented here as an alternative that does not share its predecessors’
weaknesses; however, it is not a perfect answer. The system relies on the random
selection of pairs of examples to generalize. If an insufficient number of examples is
chosen at each iteration, BUFOIDL may fail to learn an accurate decision list. Of
course, the system should not perform worse when selecting more pairs than required.
The primary trade-off here is that the learning time is impacted by the number of pairs
selected to learn from. Selecting many more pairs than are required will result in
longer learning times than necessary.
A second weakness of BUFOIDL is its very long learning time for small training sets.
Although BUFOIDL’s learning time for larger training sets is clearly superior to
FOIDL’s, it takes far longer to learn from smaller training sets, since the training time
is more closely tied to the number of pairs of examples chosen than to the number of
examples in the training set. However, we perceive the necessity of spending minutes
rather than seconds to learn from 25 examples well worth the advantage of learning
from 1000 examples in minutes (rather than hours) as well.
Although BUFOIDL does not approach the lightning speed of CLOG, it clearly
makes the learning of first-order decision lists with the level of accuracy that FOIDL
provides a realistic possibility with larger example sets.

5 Related Work

The systems most closely related to BUFOIDL are CLOG and FOIDL. However,
three other systems deserve mention.

Around the time of the development of FOIDL, Quinlan developed an alternate
system for learning decision lists called FFOIL [12]. Quinlan’s approach is based on
FOIL, requiring extensional definitions of background predicates. While FFOIL does
learn a decision list, it places the rules in the opposite order from BUFOIDL and
FOIDL, so it does not take an approach of learning exceptions to previously learned
rules. It does, however, learn a default rule that simply predicts the most common
output and places that rule at the bottom of the decision list.
The TILDE system [1,2] is also very closely related to BUFOIDL. TILDE induces
logical decision trees using a top-down approach that incorporates Blockeel and De
Raedt’s method of learning from interpretations. Blockeel and De Raedt show that
their binary logical decision trees are equivalent in expressiveness to first order
decision lists. However, their approach is not easily applicable to problems such as
the past tense task discussed in this paper for two reasons. First, their approach is a
top-down approach that requires the specification of constants to be used in the
definitions (a problem FOIDL also suffers from). More importantly, the method of

learning from interpretations is specifically focused on classification tasks, and this
particular task is not easily transformed into a classification paradigm.
Another somewhat related area of work is transformation-based learning [3].
Transformation-based learning systems learn a list of rules, and each rule strives to
correct the errors made by the previous rules. Thus, we can see similarities of concept
between the approaches of first-order decision list learning and transformation-based
learning, as both do learn lists of rules, from general to specific, and both focus on
learning rules to handle exceptions to previously learned rules. However,
transformation-based learning systems apply all of the learned rules in order, while
decision lists apply only the first applicable rule. Thus, one would expect the decision
lists systems to be faster. It remains to be seen whether either approach is more
accurate than the other.

6 Conclusions and Future Directions

In this paper, we have presented a new approach for learning first-order decision lists
and have shown that it provides considerable speed-up over the most accurate existing
system for learning this representation, while also providing comparable accuracy.
However, we have only applied the system to data that the existing top-down
approach could handle. The purpose in developing such a system is, of course, to be
able to apply this learning approach to data sets too large for FOIDL. Therefore, our
major direction for future work is to attempt to apply BUFOIDL to appropriate tasks.
We will be looking primarily at language tasks, since those seem to fit the decision
list paradigm. We also hope to do some comparisons between transformation-based
learning approaches to language learning and decision list approaches.

References

1. Blockeel, H., De Raedt, L.: Top-Down Induction of First-Order Logical Decision Trees.
Artificial Intelligence 101 (1998) 285-297

2. Blockeel, H., De Raedt, L., Jacobs, N., Demoen, B.: Scaling up Inductive Logic
Programming by Learning from Interpretations. Data Mining and Knowledge Discovery. 3
(1999) 59-93

3. Brill, E.: Transformation-Based Error-Driven Learning and Natural Language Processing: A
Case Study in Part-of-Speech Tagging. Computational Linguistics. 21 (1995) 543-565

4. Califf, M.E., Mooney, R.: Advantages of Decision Lists and Implicit Negatives in Inductive
Logic Programming. New Generation Computing. 16 (1998) 263-281

5. Califf, M.E., Mooney, R.:. Relational Learning of Pattern-Match Rules for Information
Extraction. In Proceedings of the Sixteenth National Conference on Artificial Intelligence.
AAAI Press Menlo Park, CA (1999) 328-334

6. Clark, P., Niblett, T.: The CN2 Induction Algorithm. Machine Learning, 3 (1989) 261-284
7. Manandhar, S., Džeroski, S., Erjavec, T.: Learning Multilingual Morphology with CLOG. In

Proceedings of the 8th International Workshop on Inductive Logic Programming. Springer-
Verlag Berlin Heidelberg New York (1998) 135-144

8. Mooney, R., Califf, M.E.: Induction of First-Order Decision Lists: Results on Learning the
Past Tense of English Verbs. Journal of Artificial Intelligence Research. 3 (1995) 1-24

9. Muggleton, S., Feng, C.: Efficient Induction of Logic Programs. In Proceedings of the First
Conference on Algorithmic Learning Theory. Tokyo, Japan (1990) 368-381

10. Muggleton, S.: Inverse Entailment and Progol. New Generation Computing. 13 (1995)
647-657

11. Quinlan, J.R.: Learning Logical Definitions from Relations. Machine Learning. 5 (1990)
245-286

12. Quinlan, J.R.: Learning First-Order Definitions of Functions. Journal of Artificial
Intelligence Research. 5 (1996) 139-161

13. Rivest, R.L.: Learning Decision Lists. Machine Learning. 2 (1987) 229-246
14. Webb, G.I., Brkič, N.: Learning Decision Lists by Prepending Inferred Rules. In

Proceedings of the Australian Workshop on Machine Learning and Hybrid Systems.
Melbourne, Australia (1993) 6-10

